Spatial variability of life-history parameters of the Atlantic chub mackerel (Scomber colias), an expanding species in the northeast Atlantic

Authors

DOI:

https://doi.org/10.3989/scimar.05296.048

Keywords:

growth, maturity, condition, reproductive phenology, climate change

Abstract


Atlantic chub mackerel is a pelagic species present in the Atlantic Ocean that in recent decades has expanded northwards in the eastern Atlantic. Fish samples were collected in scientific surveys and commercial catches between 2011 and 2019. We analysed the geographical variation of the biological parameters (age, length, weight and condition), as well as the length-weight relationship, maturity-at-length and spawning season onset and duration in five geographical areas (from south to north): the Canary Islands, Gulf of Cadiz, western Portuguese coast, northwestern Spanish coast and Cantabrian Sea. The influence of sea surface temperature (SST) on fish length was modelled as a potential driver of geographical variability. All biological parameters increased progressively northwards, while the spawning season was delayed and prolonged with increasing latitude, from January in the Canary Islands to May-August in the Cantabrian Sea, when SST was between 15°C and 19°C. SST had a positive effect on length in three study areas and a negative one in two of them, suggesting that each group is at a different position within their thermal tolerance range. Deviance from the geographical pattern of some biological parameters in the Gulf of Cadiz suggests that it could be a hinge or mixing zone between Atlantic African, Mediterranean and Atlantic Iberian population components.

Downloads

Download data is not yet available.

References

Alabia I.D., García Molinos J., Saitoh S.I., et al. 2018. Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Divers Distrib. 24: 1583-1597. https://doi.org/10.1111/ddi.12788

Allaya H., Hattour A., Hajjej G., Trabelsi M. 2013. Biologic characteristics of Scomber japonicus (Houttuyn, 1782) in Tunisian waters (Central Mediterranean Sea). Afr. J. Biotechnol. 12: 3040-3048.

Allaya H., Zrelli S, Hajjej G. 2016. Identification of Atlantic Chub mackerel Scomber colias population through the analysis of body shape in Tunisian waters. Cah. Biol. Mar. 57: 195-207

Alves M.F. 2016. Survey of parasites of Atlantic Chub Mackerel (Scomber colias) with economic and public health impact: MSc thesis. 1-37.

Astthorsson O.S., Valdimarsson H., Gudmundsdottir A., Óskarsson G.J. 2012. Climate-related variations in the occurrence and distribution of mackerel (Scomber scombrus) in Icelandic waters. ICES J. Mar. Sci. 69: 1289-1297. https://doi.org/10.1093/icesjms/fss084

Bachiller E., Irigoien X. 2015. Trophodynamics and diet overlap of small pelagic fish species in the bay of biscay. Mar. Ecol. Prog. Ser. 534: 179-198. https://doi.org/10.3354/meps11375

Barbee N.C., Hale R., Morrongiello J., et al. 2011. Large-scale variation in life history traits of the widespread diadromous fish, Galaxias maculatus, reflects geographic differences in local environmental conditions. Mar. Freshw. Res. 62: 790-800. https://doi.org/10.1071/MF10284

Barboza L.G.A., Lopes C., Oliveira P., et al. 2020. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total. Environ. 717: 134625. https://doi.org/10.1016/j.scitotenv.2019.134625 PMid:31836230

Basilone G., Mangano S., Pulizzi M., et al. 2017. European anchovy (Engraulis encrasicolus) age structure and growth rate in two contrasted areas of the Mediterranean Sea: the paradox of faster growth in oligotrophic seas. Mediterr. Mar. Sci. 18: 504-516. https://doi.org/10.12681/mms.2059

Belk M.C., Houston D.D. 2002. Bergmann's Rule in Ectotherms: A Test Using Freshwater Fishes. Am. Nat. 160: 803-808 https://doi.org/10.1086/343880 PMid:18707466

Benjamini Y., Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 57: 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Berge J., Heggland K., Lønne O.J., et al. 2015. First Records of Atlantic Mackerel (Scomber scombrus) from the Svalbard Archipelago, Norway, with Possible Explanations for the Extensions of Its Distribution, Arctic 68: 54-61. https://doi.org/10.14430/arctic4455

Bergmann C. 1847. Über die Verhältnisse der Wärme ökonomie der Thiere zu ihrer Grösse. Göttinger Stud. 3: 595-708.

Blanck A., Lamouroux N. 2007. Large-scale intraspecific variation in life-history traits of European freshwater fish. J. Biogeogr. 34: 862-875. https://doi.org/10.1111/j.1365-2699.2006.01654.x

Bonanno A., Barra M., Basilone G., et al. 2016. Environmental processes driving anchovy and sardine distribution in a highly variable environment: the role of the coastal structure and riverine input. Fish. Oceanogr. 25: 471-490. https://doi.org/10.1111/fog.12166

Bouzzammit N., El Ouizgani H. 2019. Morphometric and meristic variation in the Atlantic chub mackerel Scomber colias Gmelin, 1789 from the Moroccan coast. Indian J. Fish. 66: 8-15. https://doi.org/10.21077/ijf.2019.66.2.78488-02

Brosset P., Fromentin J.M., Van Beveren E., et al. 2017. Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas, Prog. Oceanogr. 151: 149-162. https://doi.org/10.1016/j.pocean.2016.12.002

Carvalho N., Perrotta R.G., Isidro E. 2002. Age, growth and maturity in the chub mackerel (Scomber japonicus Houttuyn, 1782) from the Azores. Life Mar. Sci. 19A: 93-99.

Castro J.J., Santana A.T. 2000. Synopsis of Biological Data on The Chub Marckerel (Scomber japonicus Houttuyn, 1782). FAO Fish Synopsis. 39: 1-77.

Castro L.R., Llanos A., Blanco J., et al. 2002. Influence of Latitude Variations in Spawning Habitat Characteristics on the Early Life History Traits of the anchoveta, Engraulis ringens, off northern and central Chile. In: Van der Lingen C.D., Roy C., Fréon P., Barange M., Castro L., Gutierrez M., Nykjaer L. and Shillington F. (eds). Report of a GLOBEC-SPACC/IDYLE/ENVIFISH workshop on spatial Approaches to the Dynamics of Coastal Pelagic Resources and their Environment in Upwelling Areas. GLOBEC Report 16: 42-45.

Castro L., Claramunt G., Krautz M.., et al. 2009. Egg trait variation in anchoveta Engraulis ringens: a maternal response to changing environmental conditions in contrasting spawning habitats. Mar. Ecol. Prog. Ser. 381: 237-248. https://doi.org/10.3354/meps07922

Catanese G., Manchado M., Infante C. 2010. Evolutionary relatedness of mackerels of the genus Scomber based on complete mitochondrial genomes: Strong support to the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as distinct species. Gene. 452: 35-43. https://doi.org/10.1016/j.gene.2009.12.004 PMid:20035845

Cengiz Ö. 2012. Age, growth, mortality and reproduction of the chub mackerel (Scomber japonicus Houttuyn, 1782) from Saros Bay (Northern Aegean Sea, Turkey). Turkish J. Fish. Aquat. Sci. 12: 799-809.

Cheng J., Gao T., Miao Z., Yanagimoto T. 2011. Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences. Chinese J. Oceanol. Limnol. 29: 297-310. https://doi.org/10.1007/s00343-011-0033-7

Cheung W.W.L., Lam V.W.Y., Sarmiento J.L., et al. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish. Fish. 10: 235-251. https://doi.org/10.1111/j.1467-2979.2008.00315.x

Cheung W.W.L., Meeuwig J.J., Feng M., et al. 2012. Climate-change induced tropicalisation of marine communities in Western Australia. Mar. Freshw. Res. 63: 415-427. https://doi.org/10.1071/MF11205

Cheung W.W.L., Brodeur R.D., Okey T.A., Pauly D. 2015. Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Prog. Oceanogr. 130: 19-31. https://doi.org/10.1016/j.pocean.2014.09.003

Cikeš Keč V., Zorica B. 2012. The reproductive traits of Scomber japonicus (Houttuyn, 1782) in the Eastern Adriatic Sea. J. Appl. Ichthyol. 28: 15-21. https://doi.org/10.1111/j.1439-0426.2011.01893.x

Collette B.B., Nauen C.E. 1983. FAO Species Catalogue Vol. 2 Scombrids of the world an annotated and illustrated catalogue of Tunas, Mackerels, Bonitos and related species know to date

Collette B., Amorim A.F., Boustany A., et al. 2011. Scomber colias. The IUCN Red List of Threatened Species 2011: e.T170357A6767497.

Correia A.T., Moura A., Triay-Portella R., et al. 2021. Population structure of the chub mackerel (Scomber colias) in the NE Atlantic inferred from otolith elemental and isotopic signatures. Fish. Res. 234: 105785. https://doi.org/10.1016/j.fishres.2020.105785

Costa G., Cavallero S., D'Amelio S., et al. 2011. Helminth parasites of the Atlantic chub mackerel, Scomber colias Gmelin, 1789 from Canary Islands, Central North Atlantic, with comments on their relations with other Atlantic regions. Acta Parasitol. 56: 98-104. https://doi.org/10.2478/s11686-011-0006-1

Costoya X., de Castro M., Gómez-Gesteira M., Santos F. 2015. Changes in sea surface temperature seasonality in the Bay of Biscay over the last decades (1982-2014). J. Mar. Syst. 150: 91-101. https://doi.org/10.1016/j.jmarsys.2015.06.002

FAO. 2020a. Report of the FAO Working Group on the Assessment of Small Pelagic Fish off Northwest Africa. Casablanca, Morocco, 8-13 July 2019. Casablanca, Morocco.

FAO. 2020b. Fisheries and aquaculture software. FishStatJ - software for fishery statistical time series. In: FAO Fish. Aquac. Dep. https://www.fao.org/fishery/statistics/software/fishstatj/en

Ferreri R., McBride R.S., Barra M., et al. 2019. Variation in size at maturity by horse mackerel (Trachurus trachurus) within the central Mediterranean Sea: Implications for investigating drivers of local productivity and applications for resource assessments. Fish. Res. 211, pp.291-299. https://doi.org/10.1016/j.fishres.2018.11.026

Fulton T. W. 1902. The rate of growth of fishes. 20th Annual Report of the Fishery Board of Scotland 1902 (3): 326-446.

García S. 1982. Distribution, migration and spawning of the main fish resources in the Northern CECAF Area. Rome

Garrido S., Ben-Hamadou R., Santos A.M.P., et al. 2015a. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5: 17065. https://doi.org/10.1038/srep17065 PMid:26597385 PMCid:PMC4657020

Garrido S., Silva A., Pastor J., et al. 2015b. Trophic ecology of pelagic fish species off the Iberian coast: Diet overlap, cannibalism and intraguild predation. Mar. Ecol. Prog. Ser. 539: 271-286. https://doi.org/10.3354/meps11506

Gertseva V.V., Cope J.M., Matson S.E. 2010. Growth variability in the splitnose rockfish Sebastes diploproa of the northeast Pacific Ocean: pattern revisited. Mar. Ecol. Prog. Ser. 413: 125-136. https://doi.org/10.3354/meps08719

Gertseva V., Matson S.E., Cope J. 2017. Spatial growth variability in marine fish: example from Northeast Pacific groundfish. ICES J. Mar. Sci. 74: 1602-1613. https://doi.org/10.1093/icesjms/fsx016

Giménez J., Marçalo A., Ramírez F., et al. 2017. Diet of bottlenose dolphins (Tursiops truncatus) from the Gulf of Cadiz: Insights from stomach content and stable isotope analyses. PLoS One 12: e0184673. https://doi.org/10.1371/journal.pone.0184673 PMid:28898268 PMCid:PMC5595343

Gonçalves J.M.S., Blanc N., Brandão C., et al. 2016. Valorização de recursos pesqueiros: Cavala Algarvia. Relatório final. Universidade do Algarve, CCMAR, Faro. 44pp.+Anexos.

Green B.S. 2008. Chapter 1: Maternal Effects in Fish Populations. Adv. Mar. Biol. 54: 1-105. https://doi.org/10.1016/S0065-2881(08)00001-1 PMid:18929063

Hattab T., Gucu A., Ventero A., et al. 2021. Temperature strongly correlates with regional patterns of body size variation in Mediterranean small pelagic fish species. Mediterr. Mar. Sci. 22(4): 800-811. https://doi.org/10.12681/mms.26525

Holden M.J., Raitt D.F.S. 1974. Manual of fisheries science. Part 2: Methods of resource investigation and their application. FAO Fish. Tech. Rep. 115:

Hollowed A.B., Barange M., Beamish R.J., et al. 2013. Projected impacts of climate change on marine fish and fisheries. ICES J. Mar. Sci. 70: 1023-1037. https://doi.org/10.1093/icesjms/fst081

Hughes J.M., Stewart J., Lyle J.M., et al. 2017. Influence of latitudinal variation in environmental gradients and population structure on the demography of a widespread pelagic fish, Arripis trutta (Forster, 1801). Environ. Biol. Fishes. 100: 121-135. https://doi.org/10.1007/s10641-016-0565-y

Huret M., Tsiaras K., Daewel U., et al. 2019. Variation in life-history traits of European anchovy along a latitudinal gradient: a bioenergetics modelling approach. Mar. Ecol. Prog. Ser. 617-618: 95-112. https://doi.org/10.3354/meps12574

ICES. 2020. Workshop on Atlantic chub mackerel (Scomber colias) (WKCOLIAS).

ICES. 2021a. Second Workshop on Atlantic Chub Mackerel (Scomber colias) (WKCOLIAS2).

ICES. 2021b. Working Group on Southern Horse Mackerel Anchovy and Sardine (WGHANSA).

Infante C., Blanco E., Zuasti E., et al. 2007. Phylogenetic differentiation between Atlantic Scomber colias and Pacific Scomber japonicus based on nuclear DNA sequences. Genetica. 130: 1-8. https://doi.org/10.1007/s10709-006-0014-5 PMid:16897460

Jansen T., Gislason H., Goldstien S.J. 2013. Population Structure of Atlantic Mackerel (Scomber scombrus). PloS One. 8(5): e64744. https://doi.org/10.1371/journal.pone.0064744 PMid:23741381 PMCid:PMC3669354

Jobling M. 1995. The influence of environmental temperature on growth and conversion efficiency in fish. 1995: 1-26.

Jurado-Ruzafa A., González-Lorenzo G., Jiménez S., et al. 2019. Seasonal evolution of small pelagic fish landings index in relation to oceanographic variables in the Canary Islands (Spain). Deep Res. Part II Top Stud. Oceanogr. 159: 84-91. https://doi.org/10.1016/j.dsr2.2018.07.002

Jurado-Ruzafa A., Sotillo B., Hernández E., et al. 2021. The Atlantic chub mackerel (Scomber colias) in the Canary Islands (Spain), Fishery and Biological data Update. Second Workshop on Atlantic chub mackerel (Scomber colias) Second Workshop on Atlantic Chub Mackerel (Scomber colias) (WKCOLIAS2). ICES Working Documents WD3. ICES Sci. Rep. 2(20): 148-164.

Kooijman S.A.L.M. 2009. Dynamic energy budget theory for metabolic organisation, third edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511805400

Kruskal W.H., Wallis W.A. 1952. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 47: 583-621 https://doi.org/10.1080/01621459.1952.10483441

Lambert T.C. 1987. Duration and intensity of spawning in herring Clupea harengus as related to the age structure of the mature population. Mar. Ecol. Prog. Ser. 39: 209-220. https://doi.org/10.3354/meps039209

Lorenzo J.M., Pajuelo J.G. 1996. Growth and reproductive biology of chub mackerel Scomber japonicus off the Canary Islands. Southafrican J. Mar. Sci. 17: 275-280. https://doi.org/10.2989/025776196784158635

Lowerre-Barbieri S., De Celles G., Pepin P., et al. 2017. Reproductive resilience: a paradigm shift in understanding spawner-recruit systems in exploited marine fish. Fish. Fish. 18: 285-312. https://doi.org/10.1111/faf.12180

Lucio P. 1997. Biological aspects of Spanish chub mackerel (Scomber japonicus, Houttuyn, 1782) in the Bay of Biscay from the Basque Country catches. ICES CM l997/BB: 10. 31 pp. https://www.ICES.dk/sites/pub/CM%20Doccuments/1997/BB/1997_BB10.pdf

Martins M. 1996. New biological data on growth and maturity of Spanish Mackerel (Scomber japonicus) off the Portuguese coast (ICES Division IXa). ICES CM 1996/H: 23, 17 pp.

Martins M.M., Skagen D., Marques V., et al. 2013. Changes in the abundance and spatial distribution of the Atlantic chub mackerel (Scomber colias) in the pelagic ecosystem and fsheries off Portugal. Sci. Mar. 77: 551-563. https://doi.org/10.3989/scimar.03861.07B

Mele S., Pennino M.G., Piras M.C., et al. 2014. Parasites of the head of Scomber colias (Osteichthyes: Scombridae) from the western Mediterranean Sea. Acta Parasitol. 59: 173-183. https://doi.org/10.2478/s11686-014-0207-5 PMid:24570065

Mertz G., Myers R.A. 1994. Match/mismatch predictions of spawning duration versus recruitment variability. Fish. Oceanogr. 3: 236-245. https://doi.org/10.1111/j.1365-2419.1994.tb00101.x

Muhling B., Lindegren M., Clausen L.W., et al. 2017. Impacts of Climate Change on Pelagic Fish and Fisheries. Clim. Chang. Impacts Fish. Aquat. 771-814. https://doi.org/10.1002/9781119154051.ch23

Muniz A.A., Moura A., Triay-Portella R., et al. 2020. Population structure of the chub mackerel (Scomber colias) in the North-east Atlantic inferred from otolith shape and body morphometrics. Mar. Freshw. Res. 72: 341-352. https://doi.org/10.1071/MF19389

Murawski S.A. 1993. Climate Change and Marine Fish Distributions: Forecasting from Historical Analogy. Trans. Am. Fish. Soc. 122: 647-658. https://doi.org/10.1577/1548-8659(1993)122<0647:CCAMFD>2.3.CO;2

Navarro M.R., Domínguez-Petit R., Landa J., et al. 2021a. Preliminary observations on sexual maturity of chub mackerel (Scomber colias) in the Northern Iberian Atlantic waters (ICES Divisions 27.8.c and 27.9.aN). Second Workshop on Atlantic chub mackerel (Scomber colias) (WKCOLIAS2). 11 pp.

Navarro M.R., Landa J., Villamor B., et al. 2021b. First approach to the growth and age corroboration of Northeast Atlantic chub mackerel (Scomber colias) in Northern Iberian waters. Estuar. Coast. Shelf. Sci. 107433. https://doi.org/10.1016/j.ecss.2021.107433

Nunes C., Silva A.V., Feijó D., et al. 2019. Atlantic chub mackerel (Scomber colias) growth and reproduction off the Portuguese coast in relation to the population dynamics. Front. Mar. Sci. Conference Abstract: XX Iberian Symposium on Marine Biology Studies (SIEBM XX). https://doi.org/10.3389/conf.fmars.2019.08.00022

Olafsdottir A.H., Utne K.R., Jacobsen J.A., et al. 2019. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II Top Stud. Oceanogr. 159: 152-168. https://doi.org/10.1016/j.dsr2.2018.05.023

Ottersen G., Kim S., Huse G., et al. 2010. Major pathways by which climate may force marine fish populations. J. Mar. Syst. 79: 343-360. https://doi.org/10.1016/j.jmarsys.2008.12.013

Perrotta R.G., Carvalho N., Isidro E. 2005. Comparative study on growth of Chub Mackerel (Scomber japonicus Houttuyn, 1782) from three different regions: NW Mediterranean, NE and SW Atlantic*. Rev. Investig. y Desarr. Pesq. 17: 67-79

Perry A.L., Low P.J., Ellis J.R., Reynolds J.D. 2005. Climate Change and Distribution Shifts in Marine Fishes. Science 308: 1912-1915. https://doi.org/10.1126/science.1111322 PMid:15890845

Pörtner H.O., Storch D., Heilmayer O. 2005. Constraints and trade-offs in climate-dependent adaptation: energy budgets and growth in a latitudinal cline. Sci. Mar. 69: 271-285. https://doi.org/10.3989/scimar.2005.69s2271

Punzón A., Serrano A., Sánchez F., et al. 2016. Response of a temperate demersal fish community to global warming. J. Mar. Syst. 161: 1-10. https://doi.org/10.1016/j.jmarsys.2016.05.001

Reid P.C., Valdés L. 2011. ICES status report on climate change in the North Atlantic. ICES Cooperative Research Report No. 310. 262. Copenhagen

Rijnsdorp A.D., Peck M.A., Engelhard G.H., et al. 2009. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66: 1570-1583. https://doi.org/10.1093/icesjms/fsp056

Rizkalla S. 1998. Some biological characters of chub mackerel (Scomber japonicus, Houttuyan, 1782) from the Mediterranean waters of Egypt. Egypt J. Aquat. Biol. Fish. 2: 101-116. https://doi.org/10.21608/ejabf.1998.1627

Rogers L.A., Dougherty A.B. 2019. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Glob. Chang. Biol. 25: 708-720. https://doi.org/10.1111/gcb.14483 PMid:30430699

Roldán M.I., Perrotta R.G., Cortey M., Pla C. 2000. Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus. J. Exp. Mar. Bio. Ecol. 253: 63-74. https://doi.org/10.1016/S0022-0981(00)00244-6 PMid:11018237

Rypel A.L. 2014. The cold-water connection: Bergmann's rule in North American freshwater fishes. Am. Nat. 183: 147-156. https://doi.org/10.1086/674094 PMid:24334744

Saborido-Rey F., Kjesbu O.S. 2005. Growth and maturation dynamics. 26 pp.

Santos M.J., Castro R., Cavaleiro F., et al. 2017. Comparison of anisakid infection levels between two species of Atlantic mackerel (Scomber colias and S. scombrus) off the Atlantic Portuguese coast. Sci. Mar. 81: 179-185. https://doi.org/10.3989/scimar.04552.26A

Saunders R.A., Tarling G.A. 2018. Southern ocean mesopelagic fish comply with Bergmann's Rule. Am. Nat. 191: 343-351. https://doi.org/10.1086/695767

Scoles D.R., Collette B.B., Graves J.E. 1998. Global phylogeography of mackerels of the genus Scomber. Fish. Bull. 96: 823-842.

Shephard S., Rindorf A., Dickey-Collas M., et al. 2014. Assessing the state of pelagic fish communities within an ecosystem approach and the European Marine Strategy Framework Directive. ICES J. Mar. Sci. 71: 1572-1585. https://doi.org/10.1093/icesjms/fsu005

Slesinger E., Jensen O.P., Saba G. 2021. Spawning phenology of a rapidly shifting marine fish species throughout its range. ICES J. Mar. Sci. 78: 1010-1022. https://doi.org/10.1093/icesjms/fsaa252

Stocks J.R., Gray C.A., Taylor M.D. 2014. Synchrony and variation across latitudinal gradients: The role of climate and oceanographic processes in the growth of a herbivorous fish. J. Sea Res. 90: 23-32. https://doi.org/10.1016/j.seares.2014.03.002

Sunday J.M., Bates A.E., Dulvy N.K. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B Biol. Sci. 278: 1823-1830. https://doi.org/10.1098/rspb.2010.1295 PMid:21106582 PMCid:PMC3097822

Takahashi M., McCormick M.I., Munday P.L., Jones G.P. 2012. Influence of seasonal and latitudinal temperature variation on early life-history traits of a coral reef fish. Mar. Freshw. Res. 63: 856-864. https://doi.org/10.1071/MF11278

Tasker M.L. 2008. The effect of climate change on the distribution and abundance of marine species in the OSPAR Maritime Area. ICES Coop. Res. Rep., 293. 45 pp.

Team R.C. 2021a. R: A language and environment for statistical computing.

Team Rs. 2021b. RStudio: Integrated Development for R. RStudio.

Techetach M., Hernando-Casal J.A., Saoud Y., Benajiba M.H. 2010. Reproductive biology of chub mackerel Scomber japonicus in Larache area, Moroccan North Atlantic coast. Cybium 34: 159-165.

Techetach M., Ajana R., Saoud Y. 2019. Reproductive parameters of Atlantic chub mackerel Scomber colias in M'diq Bay, Morocco. J. Mar. Biol. Assoc. United Kingdom. 99: 957-962. https://doi.org/10.1017/S0025315418000930

Torrejon-Magallanes J. 2020. sizeMat: Estimate Size at Sexual Maturity. https://cran.r-project.org/web/packages/sizeMat/sizeMat.pdf

Torres M.A., Coll M., Heymans J.J., Christensen V., Sobrino I. 2013. Food-web structure of and fishing impacts on the Gulf of Cadiz ecosystem (South-western Spain). Ecol. Modell. 265: 26-44. https://doi.org/10.1016/j.ecolmodel.2013.05.019

Van Beveren E., Bonhommeau S., Fromentin J.M., et al. 2014. Rapid changes in growth, condition, size and age of small pelagic fish in the Mediterranean, Mar. Biol. 161: 1809-1822. https://doi.org/10.1007/s00227-014-2463-1

Varela J.L., Rodríguez-Marín E., Medina A. 2013. Estimating diets of pre-spawning Atlantic bluefin tuna from stomach content and stable isotope analyses. J. Sea Res. 76: 187-192. https://doi.org/10.1016/j.seares.2012.09.002

Vasconcelos J., Afonso-Dias M., Faria G. 2012. Atlantic chub mackerel (Scomber colias) spawning season, size and age at first maturity in Madeira waters. Life Mar. Sci. 29: 43-51

Veiga-Malta T., Szalaj D., Angélico M.M., et al. 2019. First representation of the tropic structure and functioning o the Portuguese continental shelf ecosystem: insights into the role of sardine. Mar. Ecol. Prog. Ser. 617-618: 323-340 https://doi.org/10.3354/meps12724

Velasco E.M., del Arbol J., Baro J., Sobrino I. 2011. Edad y crecimiento del estornino Scomber colias del sur de España: una comparación entre muestras procedentes del Atlántico NE y del SW Mediterráneo. Rev. Biol. Mar. Oceanogr. 46: 27-34. https://doi.org/10.4067/S0718-19572011000100004

Vergés A., Steinberg P.D., Hay M.E., et al. 2014. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281(1789): 20140846. https://doi.org/10.1098/rspb.2014.0846 PMid:25009065 PMCid:PMC4100510

Vila-Gispert A., Moreno-Amich R., García-Berthou E. 2002. Gradients of life-history variation: An intercontinental comparison of fishes. Rev. Fish. Biol. Fish. 12: 417-427. https://doi.org/10.1023/A:1025352026974

Villamor B., Carrera P., Castro J., et al. 2017. The Chub Mackerel (Scomber colias) in the Atlantic Spanish Waters (ICES divisions 8.c and 9.a): Biological, fishery and survey data. Report of the Working Group on Widely Distributed Stocks (WGWIDE). ICES Working Document WD XVI. ICES CM 2017/ACOM: 23. 873-934.

Wahbi F. 2017. Bio-écologie de Trachurus trachurus (Linnaeus, 1758) et de Scomber colias Gmelin, 1789 dans l'écosystème pélagique de la zone atlantique sud marocaine (21oN - 26o30'N). PhD thesis, Univ. Hassan II, Faculté des Sciences Ain Chock, Casablanca. 230 pp.

Wahbi F., Errhif A., Ettahiri O. 2011. Cycle de reproduction et variabilité du régime alimentaire du maquereau Scomber japonicus (Houttuyn, 1782) débarqué au port de Casablanca. In: Garcia S., Tandstad M., Caramelo A.M. (eds) Science and Management of Small Pelagic, Fisheries and Aquaculture proceedings. FAO, pp 127-138

Walsh M., Hopkins P., Witthames P.R., et al. 1990. Estimation of total potential fecundity and atresia in the western mackerel stock in 1989. ICES Document CM. 1990/H: 31. 22 pp.

Whitehead P.J.P., Bauchot M.L., Hureau J.C., et al. 1984. Scombridae. In: Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO, Paris. 981-997. ISBN: 92-3-002308-6 (v.2)

Wickham H. 2016. ggplot2: Elegant graphics for data analysis. 2nd edition. Springer International Publishing, Cham. 260 pp.

Wood S.N. 2011. Mgcv: GAMs with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL

Wood S.N. 2017. Generalized additive models: An introduction with R. 2nd edition. CRC Press, New York. 496 pp. https://doi.org/10.1201/9781315370279

Wright P.J., Trippel E.A. 2009. Fishery-induced demographic changes in the timing of spawning: consequences for reproductive success. Fish. Fish. 10: 283-304. https://doi.org/10.1111/j.1467-2979.2008.00322.x

Zardoya R., Castilho R., Grande C., et al. 2004. Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol. Ecol. 13: 1785-1798. https://doi.org/10.1111/j.1365-294X.2004.02198.x PMid:15189203

Published

2022-12-14

How to Cite

1.
Domínguez-Petit R, Navarro MR, Cousido-Rocha M, Tornero J, Ramos F, Jurado-Ruzafa A, Nunes C, Hernández C, Silva AV, Landa J. Spatial variability of life-history parameters of the Atlantic chub mackerel (Scomber colias), an expanding species in the northeast Atlantic. Sci. mar. [Internet]. 2022Dec.14 [cited 2024Apr.16];86(4):e048. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1937

Issue

Section

Articles