Morphological and molecular evidence of cryptic speciation in sympatric colour morphotypes of Mycale (Carmia) cecilia (Porifera: Poecilosclerida) from the Mexican Pacific

Authors

DOI:

https://doi.org/10.3989/scimar.05339.082

Keywords:

Porifera, anisochelae categories, cryptic species, COI, 28S rRNA, ITS1, colour morphotype, transcriptomics

Abstract


Identifying cryptic species is pivotal for understanding marine biodiversity and optimizing strategies for its conservation. A robust understanding of poriferan diversity is a complex endeavour. It has also been extremely hampered by the high phenotypic plasticity and the limited number of diagnostic characters. Mycale (Carmiacecilia has different body colours, even among individuals living together. We tested whether the colour variation could be due to polymorphism, phenotypic plasticity or cryptic speciation. Phylogenetic reconstructions of nuclear and mitochondrial loci were congruent. Individuals of different body colour did not cluster together and had high levels of genetic divergence. Furthermore, the green morphotype clustered in almost all reconstructions with Mycale (C.phyllophila, as both showed higher gene similarity at the transcriptomic level (public transcriptome). Morphologically, the green individuals consistently showed discrepancies from the red ones. These results suggest that all individuals with the same body colour, either red or green, correspond to the same species, while individuals with different body colours probably belong to different species. These results reveal high levels of morphologic and genetic diversity, which could have important implications for what is known as M. (C.cecilia and the Mycalidae systematics.

Downloads

Download data is not yet available.

References

Adlard R., Lester R.J. 1995. Development of a diagnostic test for Mikrocytos roughleyi, the aetiological agent of Australian winter mortality of the commercial rock oyster, Saccostrea commercialis (Iredale and Roughley). J. Fish Dis. 18: 609-614. https://doi.org/10.1111/j.1365-2761.1995.tb00365.x

Becking L.E., Erpenbeck D., Peijnenburg K.T.C.A., de Voogd N.J. 2013. Phylogeography of the Sponge Suberites diversicolor in Indonesia: Insights into the Evolution of Marine Lake Populations. PLoS ONE 8: e75996. https://doi.org/10.1371/journal.pone.0075996 PMid:24098416 PMCid:PMC3788070

Belinky F., Szitenberg A., Goldfarb I., et al. 2012. ALG11 - A new variable DNA marker for sponge phylogeny: Comparison of phylogenetic performances with the 18S rDNA and the COI gene. Mol. Phylogenet. Evol. 63: 702-713. https://doi.org/10.1016/j.ympev.2012.02.008 PMid:22387211

Bickford D., Lohman D.J., Sodhi N.S., Ng P.KL., Meier R., Winker K., Ingram KK., Das I. 2006. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148-155. https://doi.org/10.1016/j.tree.2006.11.004 PMid:17129636

Blanquer A., Uriz M-J. 2007. Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: A phylogenetic approach. Mol. Phylogenet. Evol. 45: 392-397. https://doi.org/10.1016/j.ympev.2007.03.004 PMid:17434762

Blanquer A., Uriz M-J. 2008. "A posteriori" searching for phenotypic characters to describe new cryptic species of sponges revealed by molecular markers (Dictyonellidae: Scopalina). Invertebr. Syst. 22: 489-502. https://doi.org/10.1071/IS07004 https://doi.org/10.1071/IS07004

Borchiellini C., Chombard C., Lafay B. NB-E. 2000. Molecular systematics of sponges (Porifera). Hydrobiologia. 420: 15-27. https://doi.org/10.1007/978-94-017-2184-4_2 https://doi.org/10.1007/978-94-017-2184-4_2

Bucklin A., Steinke D., Blanco-Bercial L. 2011. DNA Barcoding of Marine Metazoa. Ann. Rev. Mar. Sci. 3: 471-508. https://doi.org/10.1146/annurev-marine-120308-080950 https://doi.org/10.1146/annurev-marine-120308-080950 PMid:21329214

Carballo J.L., Cruz-Barraza J.A. 2008. First record of Axinyssa Lendenfeld, 1897 (Demospongiae, Halichondrida) from the East Pacific Ocean, with the description of Axinyssa isabela sp. nov. Zootaxa. 1784: 58-68. https://doi.org/10.11646/zootaxa.1784.1.4

Carballo J.L., Cruz-Barraza J.A. 2010. A revision of the genus Mycale (Poecilosclerida: Mycalidae) from the Mexican Pacific Ocean. Contrib. Zool. 79: 165-191. https://doi.org/10.1163/18759866-07904003

Cárdenas P., Pérez T., Boury-Esnault N. 2012. Sponge Systematics Facing New Challenges. Adv. Mar. Biol. 61: 79-209. https://doi.org/10.1016/B978-0-12-387787-1.00010-6 PMid:22560778

Cárdenas P., Rapp H.T., Schander C., Tendal O.S. 2010. Molecular taxonomy and phylogeny of the Geodiidae (Porifera, Demospongiae, Astrophorida) - Combining phylogenetic and Linnaean classification. Zool. Sci. 39: 89-106. https://doi.org/10.1111/j.1463-6409.2009.00402.x

Castillo-Páez A.Y., Llera-Herrera R., Cruz-Barraza J.A. 2021. De novo transcriptome assembly for two colour types of the marine sponge Mycale (Carmia) cecilia. Mol. Biol. Rep. 48: 1-4. https://doi.org/10.1007/s11033-021-06274-4 PMid:33782784

Chenauil A., Cahill A.E., Délémontey N., et al. 2019. Problems and questions posed by cryptic species. A framework to guide future studies. In: Casetta J., da Silva., Vecchi D. (eds), From Assessing to Conserving Biodiversity: Conceptual and Practical Challenges, pp. 77-106. https://doi.org/10.1007/978-3-030-10991-2_4

Desqueyroux-Faúndez R., van Soest R.W.M. 1997. Shallow waters Demosponges of the Galápagos Islands. Rev. Suisse Zool. 104: 379-467. https://doi.org/10.5962/bhl.part.80003

Emms D.M., Kelly S. 2017. STRIDE: Species Tree Root Inference from Gene Duplication Events. Mol. Biol. Evol. 34: 3267-3278. https://doi.org/10.1093/molbev/msx259 PMid:29029342 PMCid:PMC5850722

Emms D.M., Kelly S. 2018. STAG: Species Tree Inference from All Genes. BioRxiv. 267914. https://doi.org/10.1101/267914

Emms D.M., Kelly S. 2019. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20: 1-14. https://doi.org/10.1186/s13059-019-1832-y PMid:31727128 PMCid:PMC6857279

Escobar D., Zea S., Sánchez J.A. 2012. Phylogenetic relationships among the Caribbean members of the Cliona viridis complex (Porifera, Demospongiae, Hadromerida) using nuclear and mitochondrial DNA sequences. Mol. Phylogenet. Evol. 64: 271-284. https://doi.org/10.1016/j.ympev.2012.03.021 PMid:22510309

Esteves E.L., de Paula T.S., Lerner C., et al. 2018. Morphological and molecular systematics of the "Monanchora arbuscula complex" (Poecilosclerida: Crambeidae), with the description of five new species and a biogeographic discussion of the genus in the Tropical Western Atlantic. Invertebr. Syst. 32: 457-503. https://doi.org/10.1071/IS16088

Fusco G., Minelli A. 2010. Phenotypic plasticity in development and evolution: facts and concepts. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365: 547-556. https://doi.org/10.1098/rstb.2009.0267 PMid:20083631 PMCid:PMC2817147

Green G., Gómez P. 1985. Estudio taxonómico de las esponjas de la Bahía de Mazatlán Sinaloa, México. An. Cent. Cienc. Mar. Limnol. 273-300.

Haas B.J., Papanicolaou A., Yassour M., et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8: 1494-1512. https://doi.org/10.1038/nprot.2013.084 PMid:23845962 PMCid:PMC3875132

Hajdu E., Riitzler K. 1998. Sponges, genus Mycale (Poecilosclerida: Demospongiae: Porifera), from a Caribbean mangrove and comments on subgeneric classification. Proc. Biol. Soc. Wash. 111: 737-773.

Huang D., Meier R., Todd P.A., Chou L.M. 2008. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J. Mol. Evol. 66: 167-174. https://doi.org/10.1007/s00239-008-9069-5 PMid:18259800

Kenny N.J., Itskovich V.B. 2020. Phylogenomic inference of the interrelationships of Lake Baikal sponges. Syst. Biodivers. 0: 1-9.

Knapp I.S., Forsman Z.H., Williams G.J., et al. 2015. Cryptic species obscure introduction pathway of the blue Caribbean sponge (Haliclona (Soestella) caerulea), (order: Haplosclerida) to Palmyra Atoll, Central Pacific. PeerJ. 2015. https://doi.org/10.7717/peerj.1170 https://doi.org/10.7717/peerj.1170 PMid:26339548 PMCid:PMC4558080

Knowlton N. 1993. Sibling species in the sea. Annu. Rev. Ecol. Syst. 24: 189-216. https://doi.org/10.1146/annurev.es.24.110193.001201 https://doi.org/10.1146/annurev.es.24.110193.001201

Kumar S., Stecher G., Li M., et al. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096 PMid:29722887 PMCid:PMC5967553

de Laubenfels M.W. 1936. A comparison of the shallow-water sponges near The Pacific and of The Panama Canal with those at The Caribbean end. Proc U. S. Natl. Mus. 83: 441-466. https://doi.org/10.5479/si.00963801.83-2993.441

de Laubenfels M.W. 1950. The sponges of Kaneohe Bay, Oahu. Pac. Sci. 4: 3-36.

Loh T.L., López-Legentil S., Song B., Pawlik J.R. 2012. Phenotypic variability in the Caribbean Orange Icing sponge Mycale laevis (Demospongiae: Poecilosclerida). Hydrobiologia. 687: 205-217. https://doi.org/10.1007/s10750-011-0806-1

López-Legentil S., Erwin P.M., Henkel T.P., et al. 2010. Phenotypic plasticity in the Caribbean sponge Callyspongia vaginalis (Porifera: Haplosclerida). Sci. Mar. 74: 445-453. https://doi.org/10.3989/scimar.2010.74n3445

Ortega M.J., Zubía E., Sánchez M.C., et al. 2004. Structure and cytotoxicity of new metabolites from the sponge Mycale cecilia. Tetrahedron. 60: 251-2524. https://doi.org/10.1016/j.tet.2004.01.056

Park M-H.H., Sim C-J.J., Baek J., Min G-S.S. 2007. Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Mol. Cells. 23: 220-227. https://doi.org/10.1016/S1016-8478(23)07377-6 PMid:17464200

Petit R.J., Excoffier L. 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24: 386-393. https://doi.org/10.1016/j.tree.2009.02.011 PMid:19409650

Pfenninger M., Schwenk K. 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC. Evol. Biol. 7: 1-6. https://doi.org/10.1186/1471-2148-7-121 PMid:17640383 PMCid:PMC1939701

Puillandre N., Brouillet S., Achaz G. 2021. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21: 609-620. https://doi.org/10.1111/1755-0998.13281 PMid:33058550

De Queiroz K. 2007. Species concepts and species delimitation. Syst. Biol. 56: 879-886. https://doi.org/10.1080/10635150701701083 PMid:18027281

Shaffer M.R., Davy SK., Bell J.J. 2019. Hidden diversity in the genus Tethya: comparing molecular and morphological techniques for species identification. Heredity. 122: 354-369. https://doi.org/10.1038/s41437-018-0134-6 PMid:30131516 PMCid:PMC6460755

Van Soest R.W.M.M., Hajdu E. 2002. Family Mycalidae Lundbeck, 1905. In: Hooper J.N.A., Van Soest R.W.M. (eds), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York, pp. 669-690. https://doi.org/10.1007/978-1-4615-0747-5_73

Uriz M.J., Turon X. 2012. Sponge ecology in the molecular era. Adv. Mar. Biol. 61: 345-410. https://doi.org/10.1016/B978-0-12-387787-1.00006-4 PMid:22560781

Uriz M.J., Garate L., Agell G. 2017. Molecular phylogenies confirm the presence of two cryptic Hemimycale species in the mediterranean and reveal the polyphyly of the genera Crella and Hemimycale (Demospongiae: Poecilosclerida). PeerJ 5:e2958. https://doi.org/10.7717/peerj.2958 PMid:28286707 PMCid:PMC5344016

Additional Files

Published

2024-03-15

How to Cite

1.
Castillo-Páez A, Llera-Herrera R, Cruz-Barraza JA. Morphological and molecular evidence of cryptic speciation in sympatric colour morphotypes of Mycale (Carmia) cecilia (Porifera: Poecilosclerida) from the Mexican Pacific. Sci. mar. [Internet]. 2024Mar.15 [cited 2024Apr.28];88(1):e082. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/5525

Issue

Section

Articles

Funding data

Universidad Nacional Autónoma de México
Grant numbers PAPIIT-UNAM IN210018

Most read articles by the same author(s)