Long-term changes in maturation of sardine, Sardina pilchardus, in Portuguese waters


  • Alexandra Silva Instituto Português do Mar e da Atmosfera (IPMA)
  • Sara Faria Instituto Português do Mar e da Atmosfera (IPMA) - Cascais Ambiente
  • Cristina Nunes Instituto Português do Mar e da Atmosfera (IPMA)




maturation condition, sardine, Portuguese waters


Long-term changes in sardine maturation were described using samples collected from landings off the western Portuguese coast since 1947. Estimates of the length at 50% maturity (L50) were calculated in 44 years of the study period and proved to be good proxies of the maturation length of first-year spawners (Lp50 of age 0-1 fish). Sardine probability of maturing at a given length declined from the early 1950s to the late 1960s, corresponding to an increase of ca. 2 cm in both L50 and Lp50. This trend reversed in the early 1970s and halted in the early to mid-1990s. The tendency for sardine to mature at a lower length was positively correlated with improved body condition in the growing season preceding maturation. Long-term trends in sardine maturation and body condition were parallel to trends in sea surface temperature reported in the literature. The results suggest that maturation at a lower size is directly influenced by increased temperature, and that higher temperatures improve body condition through increased feeding efficiency or a combination of both. We found no evidence that fishing intensity has contributed to long-term changes in sardine maturation.


Download data is not yet available.


Afonso-Dias I., Amorim P., Silva A. 2008. Problems with assigning the ovaries of sardine (Sardina pilchardus) to the appropriate macroscopic maturity stage. Mar. Biodiver. Rec. 1: e20. http://dx.doi.org/10.1017/S175526720700190X

Allendorf F.W., England P.R., Luikart G., Ritchie P.A., Ryman N. 2008. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23: 327-337. http://dx.doi.org/10.1016/j.tree.2008.02.008 PMid:18439706

Anderson C.N.K., Hsieh C.-h., Sandin S.A., Hewitt R, Hollowed A, Beddington J., May R.M., Sugihara G. 2008. Why fishing magnifies fluctuations in fish abundance. Nature 452: 835-839. http://dx.doi.org/10.1038/nature06851 PMid:18421346

Bandarra N.M., Batista I., Nunes M.L., Empis J.M., Christie W.W. 1997. Seasonal changes in lipid composition of sardine (Sardina pilchardus). J. Food Sci. 62: 40-42. http://dx.doi.org/10.1111/j.1365-2621.1997.tb04364.x

Carrillo M., Zanuy S., Felip A., Bayarri M.J., Molés G., Gómez A. 2009. Hormonal and environmental control of puberty in Perciform fish, the case of sea bass. Trends in Comparative Endocrinology and Neurobiology. Ann. N.Y. Acad. Sci. 1163: 49-59. http://dx.doi.org/10.1111/j.1749-6632.2008.03645.x PMid:19456327 Crawley 2007. The R Book. John Wiley & Sons Ltd., Chichester, 951 pp.

Dieckmann U., Heino M. 2008. Probabilistic maturation reaction norms: their history, strengths, and limitations. Mar. Ecol. Prog. Ser. 335: 253-269. http://dx.doi.org/10.3354/meps335253

Dhillon R.S., Fox M.G. 2004. Growth-independent effects of temperature on age and size at maturity in Japanese medaka (Oryzias latipes). Copeia 1: 37-45. http://dx.doi.org/10.1643/CI-02-098R1

Dunlop E.S., Heino M., Dieckmann U. 2009. Eco-genetic modeling of contemporary life-history evolution. Ecol. Appl. 19: 1815-1834. http://dx.doi.org/10.1890/08-1404.1 PMid:19831072

Enberg K., Jørgensen C., Dunlop E.S., Heino M. Dieckmann U. 2009. Implications of fisheries-induced evolution for stock rebuilding and recovery. Evol. Appl. (2009): 394-414.

Engelhard G.H., Heino M. 2004. Maturity changes in Norwegian spring-spawning herring Clupea harengus: compensatory or evolutionary responses? Mar. Ecol. Progr. Ser. 272: 245-256. http://dx.doi.org/10.3354/meps272245

Furnestin J. 1943. Contribution à l'étude biologique de la sardine Atlantique (Sardina pilchardus Walbaum). Rev. Trav. Off. Sci. Tech. Pêch. Marit. 13: 211-340.

Ganias K. 2009. Linking sardine spawning dynamics to environmental variability. Est. Coast. Shelf Sci. 84: 402-408. http://dx.doi.org/10.1016/j.ecss.2009.07.004

Heino M., Dieckmann U. 2008. Detecting fisheries-induced lifehistory evolution: an overview of the reaction-norm approach. Bull. Mar. Sci. 83: 69-93.

Hilborn R., Walters C.J. 2001. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Chapman & Hall, New York, 570 pp. PMid:11672480

Handeland S.O., Imsland A.K., Stefansson S.O. 2008. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283: 36-42. http://dx.doi.org/10.1016/j.aquaculture.2008.06.042

ICES 2010. Report of the working group on anchovy and sardine (WGANSA). ICES Document CM 2010/ACOM, 16, 295 pp.

ICES 2012. Report of the Benchmark Workshop on Pelagic Stocks (WKPELA 2012). ICES Document CM 2012/ACOM, 47, 524 pp.

Jorge I. 1972. Estudos sobre a biologia e pesca da sardinha da costa continental portuguesa. 1. Estatisticas e taxas de mortalidade. Bol. Inf. Inst. Biol. Marít. 6: 12 pp.

Jørgensen C., Enberg K., Dunlop E.S., Arlinghaus R., Boukal D.S., Brander K., Ernande B., Gårdmark A., Johnston F., Matsumura S., Pardoe H., Raab K., Silva A., Vainikka A., Dieckmann U., Heino M., Rijnsdorp A. 2007. Management of the world's evolving fish stocks. Science 318: 1247-1248. http://dx.doi.org/10.1126/science.1148089 PMid:18033868

Kuparinen A., Merilä J. 2007. Detecting and managing fisheriesinduced evolution. Trends Ecol. Evol. 22: 652-659. http://dx.doi.org/10.1016/j.tree.2007.08.011 PMid:17981361

Law R. 2000. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57: 659-668. http://dx.doi.org/10.1006/jmsc.2000.0731

Lemos R.T., Pires H.O. 2004. The upwelling regime off the west Portuguese coast, 1941-2000. Int. J. Climatol. 24: 511-524. http://dx.doi.org/10.1002/joc.1009

Lemos R.T., Sansó B. 2006. Spatio-temporal variability of ocean temperature in the Portugal Current System. J. Geophys. Res. B 111: C04010.

Macdonald P. 2008. Mixdist: Finite Mixture Distribution Models. R package version 0.5-2. http://CRAN.R-project.org/package=mixdist.

Marshall C.T., McAdam B.J. 2007. Integrated perspectives on genetic and environmental effects on maturation can reduce potential for errors of inference. Mar. Ecol. Prog. Ser. 335: 301-310. http://dx.doi.org/10.3354/meps335301

Mendes H.V., Borges M.F. 2006. A sardinha no Século XX: capturas e esforço de pesca. Relatórios Científicos e Técnicos do IPIMAR, Série digital, 32, 20 pp.

Mood A.M., Graybill F.A., Boes D.C. 1974. Introduction to the Theory of Statistics. McGraw-Hill, New York, 564 pp. PMid:4830168

Nunes C., Silva A., Soares E., Ganias K. 2011a. The use of hepatic and somatic indices and histological information to characterize the reproductive dynamics of Atlantic sardine Sardina pilchardus from the Portuguese coast. Mar. Coast. Fish. 3: 127-144. http://dx.doi.org/10.1080/19425120.2011.556911

Nunes C., Silva A., Marques V., Ganias K. 2011b. Integrating fish size, condition, and population demography in the estimation of sardine annual fecundity. Cienc. Mar. 37(4B): 565-584.

Okuzawa K. 2002. Puberty in teleosts. Fish Physiol. Biochem. 26: 31-41. http://dx.doi.org/10.1023/A:1023395025374

Pankhurst N.W., Porter M.J.R. 2003. Cold and dark or warm and light: variations on the theme of environmental control of reproduction. Fish Physiol. Biochem. 28: 385-389. http://dx.doi.org/10.1023/B:FISH.0000030602.51939.50

Óskarsson G.J., Taggart C.T. 2010. Variation in reproductive potential and influence on Icelandic herring recruitment. Fish. Oceanogr. 19: 412-426. http://dx.doi.org/10.1111/j.1365-2419.2010.00554.x

Parrish R.H., Serra R., Grant W.S. 1989. The monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure, and zoogeography. Can. J. Fish. Aquat. Sci. 46: 2019-2036. http://dx.doi.org/10.1139/f89-251

Parrish R.H., Mallicoate D.L. 1995. Variation in the condition factors of California pelagic fishes and associated environmental factors. Fish. Oceanogr. 4: 171-190. http://dx.doi.org/10.1111/j.1365-2419.1995.tb00070.x

Pinto J.S. 1957. Essai d'une échelle de maturation sexuelle, pour les males de la sardine (Sardina pilchardus Walb.) basée sur l'histologie des testicules. Not. Est. Inst. Biol. Marít. 15: 1-13.

Pinto J.S., Andreu B. 1957. Échelle pour la caractérisation des phases evolutives de l'ovaire de sardine (Sardina pilchardus, Walb.) en rapport avec l'histophisiologie de la gonade. GFCM Proc. Tech. Pap. 46: 393-411.

R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Relvas P., Luís J., Santos A.M.P. 2009. Importance of the mesoscale in the decadal changes observed in the northern Canary upwelling system. Geophys. Res. Lett., 36, L2260, 4 pp.

Rochet M.-J., Cornillon P.-A., Sabatier R., Pontier D. 2000. Comparative analysis of phylogenetic and fishing effects in life history patterns of teleost fishes. Oikos 91: 255-270. http://dx.doi.org/10.1034/j.1600-0706.2000.910206.x

Silva A., Santos M.B., Caneco B., Pestana G., Porteiro C., Carrera P., Stratoudakis Y. 2006. Temporal and geographic variability of sardine maturity at length in the north-eastern Atlantic and the western Mediterranean. ICES J. Mar. Sci. 63: 663-676. http://dx.doi.org/10.1016/j.icesjms.2006.01.005

Silva A., Carrera P., Massé J., Uriarte A.D., Santos M.B., Oliveira P. B., Soares E., Porteiro C., Stratoudakis Y. 2008. Geographic variability of sardine growth across the northeastern Atlantic and the Mediterranean Sea. Fish. Res. 90: 56-69. http://dx.doi.org/10.1016/j.fishres.2007.09.011

Sinclair A.F., Swain D.P., Hanson J.M. 2002. Disentangling the effects of size-selective mortality, density, and temperature on length-at-age. Can. J. Fish. Aquat. Sci. 59: 372-382. http://dx.doi.org/10.1139/f02-014

Stratoudakis Y., Coombs S., Lago de Lanzós A., Halliday N., Costas G., Caneco B., Franco C., Conway D., Santos M.B., Silva A., Bernal M. 2007. Sardine (Sardina pilchardus) spawning seasonality in European waters of the northeast Atlantic. Mar. Biol. 152: 201-212. http://dx.doi.org/10.1007/s00227-007-0674-4

Tobin D., Wright P.J. 2011.Temperature effects on maturation in a temperate marine fish. J. Exp. Mar. Biol. Ecol. 403: 9-13. http://dx.doi.org/10.1016/j.jembe.2011.03.018

van der Lingen C.D., Fréon P., Fairweather T.P., van der Westhuizen J.J. 2006. Density-dependent changes in reproductive parameters and condition of southern Benguela sardine Sardinops sagax. Afr. J. Mar. Sci. 28: 625-636 http://dx.doi.org/10.2989/18142320609504212

Watanabe C., Yatsu A. 2006. Long-term changes in maturity at age of chub mackerel (Scomber japonicus) in relation to population declines in the waters off northeastern Japan. Fish. Res. 78: 323-332. http://dx.doi.org/10.1016/j.fishres.2006.01.001

Wood S.N. 2006. Generalized additive models. An introduction with R. New York, Chapman & Hall/CRC, 391 pp.

Wright P.J. 2007. Understanding the maturation process for field investigations of fisheries-induced evolution. Mar. Ecol. Prog. Ser. 335: 279-283. http://dx.doi.org/10.3354/meps335279

Yoneda M., Wright P.J. 2005. Effects of varying temperature and food availability on growth and reproduction in first time spawning female Atlantic cod. J. Fish Biol. 67: 1225-1241. http://dx.doi.org/10.1111/j.1095-8649.2005.00819.x




How to Cite

Silva A, Faria S, Nunes C. Long-term changes in maturation of sardine, Sardina pilchardus, in Portuguese waters. scimar [Internet]. 2013Sep.30 [cited 2023Nov.28];77(3):429-38. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1472




Most read articles by the same author(s)