Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters
DOI:
https://doi.org/10.3989/scimar.05287.046Keywords:
North Atlantic Oscillation, life history, reproductive traits, relative condition factor, southern European stockAbstract
European hake (Merluccius merluccius) is a commercially important resource in Iberian Atlantic waters. Despite the recovery plan implemented in 2006 and the multiannual management plan for western waters, fishing mortality is still higher than that corresponding to the maximum sustainable yield for the southern European hake stock. The biological processes underlying the dynamics of this stock and its life history traits are essential for assessing population productivity and resilience, making them basic information for management. We analysed the temporal variability of size at maturity (L50) of this species and the main factors influencing it in Atlantic Iberian waters from 1982 to 2019. The annual variability of L50 for each sex was modelled with generalized additive models, considering explanatory environmental variables (Atlantic Multidecadal Oscillation, North Atlantic Oscillation and sea surface temperature) and biological variables (biomass, spawning biomass at length and relative condition factor). The results showed that the L50 of males decreased by a total of 12.9 cm and L50 of females decreased by a total of 10.9 cm from 1982 to 2019. For females the significant explanatory variables were year, spawning biomass at length, biomass and the North Atlantic Oscillation, while for males only year was an explanatory variable. These results are important for understanding the status of the European hake population, signalling that L50 is a good indicator for predicting future population dynamics.
Downloads
References
Albo-Puigserver M., Pennino M.G., Bellido J.M., et al. 2021. Changes in life history traits of small pelagic fish in the western Mediterranean Sea. Front. Mar. Sci. 8: 1197. https://doi.org/10.3389/fmars.2021.570354
Ali M., Nicieza A., Wootton R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish. Fish. 4: 147-190. https://doi.org/10.1046/j.1467-2979.2003.00120.x
Ashton W.D. 1972. The logit transformation with special reference to its uses in bioassay. Haffner Publishing Co., INC., New York, 88 pp.
Barot S, Heino M, O'Brien L, Dieckmann U. 2004. Estimating reaction norms for age and size at maturation when age at first reproduction is unknown. Evol. Ecol. Res. 6: 659-678.
Cerviño S., Domínguez R., Jardim E., et al. 2013. Impact of egg production and stock structure on MSY reference points. Implications for Southern hake management. Fish. Res. 138: 168-178. https://doi.org/10.1016/j.fishres.2012.07.016
Dalgleish H.J., Koons D.N., Adler P.B. 2010. Can life-history traits predict the response of populations to changes in climate variability? J. Ecol. 98: 209-217. https://doi.org/10.1111/j.1365-2745.2009.01585.x
Dominguez-Petit R. 2007. Study of reproductive potential of Merluccius merluccius in the Galician shelf. Doctoral Thesis. University of Vigo, Spain.
Dominguez-Petit R., Korta M., Saborido-Rey F., et al. 2008. Changes in size at maturity of European hake Atlantic populations in relation with stock structure and environmental regimes. J. Mar. Syst. 71: 260-278. https://doi.org/10.1016/j.jmarsys.2007.04.004
Dominguez-Petit R., García-Fernandez C., Leonarduzzi E., et al. 2022. Parental effects and reproductive potential of fish and marine invertebrates: Cross-generational impact of environmental experiences. In: Domínguez-Petit R. (ed). Impact of Environmental Stress on Reproductive Processes of Aquatic Animals. Fishes 7: 188. https://doi.org/10.3390/fishes7040188
Drinkwater K.F. 2005. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J. Mar. Sci. 62: 1327-1337. https://doi.org/10.1016/j.icesjms.2005.05.015
Engelhard G.H., Heino M. 2004. Maturity changes in Norwegian spring spawning herring Clupea harengus: compensatory or evolutionary responses? Mar. Ecol. Prog. Ser. 272: 245-256. https://doi.org/10.3354/meps272245
Fox J., Weisberg S. 2019. An R Companion to Applied Regression (Third). SAGE Publications Inc, pp. 608.
Godø O.R., Haug T. 1999. Growth rate and sexual maturity in cod (Gadus morhua) and Atlantic halibut (Hippoglosus hippoglossus). J. Northwest Atl. Fish. Sci. 25: 115-123. https://doi.org/10.2960/J.v25.a10
Goikoetxea N., Irigoien X. 2013. Links between the recruitment success of northern European hake (Merluccius merluccius L.) and a regime shift on the NE Atlantic continental shelf. Fish. Oceanogr. 22: 459-476. https://doi.org/10.1111/fog.12033
Greene C.H., Pershing A.J. 2000. The response of Calanus finmarchicus populations to climate variability in the Northwest Atlantic: basin-scale forcing associated with the North Atlantic Oscillation. ICES J. Mar. Sci. 57: 1536-1544. https://doi.org/10.1006/jmsc.2000.0966
Haug T., Tjemsland T. 1986. Changes in size and age distribution and age at sexual maturity in Atlantic Halibut, Hippoglossus hippoglossus, caught in North Norwegian waters. Fish. Res. 4: 145-155. https://doi.org/10.1016/0165-7836(86)90039-1
Hidalgo M., Rouyer T., Bartolino V., et al. 2012. Context-dependent interplays between truncated demographies and climate variation shape the population growth rate of a harvested species. Ecography 35: 637-649. https://doi.org/10.1111/j.1600-0587.2011.07314.x
Hidalgo M., Rouyer T., Molinero J.C., et al. 2014. Contrasting evolutionary demography induced by fishing: The role of adaptive phenotypic plasticity. Ecol. App. 24:1101-1114. https://doi.org/10.1890/12-1777.1 PMid:25154099
Hixon M.A., Johnson D.W., Sogard S.M. 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71: 2171-2185. https://doi.org/10.1093/icesjms/fst200
Hjermann D.Ø., Stenseth N.C., Ottersen G. 2004. Indirect climatic forcing of the Barents Sea capelin: a cohort effect. Mar. Ecol. Prog. Ser. 273: 229-238. https://doi.org/10.3354/meps273229
Hobday A.J., Smith A.D.M., Stobutzki I.C., et al. 2011. Ecological risk assessment for the effects of fishing. Fish Res. 108: 372-384. https://doi.org/10.1016/j.fishres.2011.01.013
Hollins J., Thambithurai D., Koeck B., et al. 2018. A physiological perspective on fisheries-induced evolution. Evol. Appl. 11: 561-576. https://doi.org/10.1111/eva.12597 PMid:29875803 PMCid:PMC5978952
ICES. 2019. Working Group for the Bay of Biscay and the Iberian Waters Ecoregion (WGBIE). ICES Sci. Rep. 1:31.
ICES. 2021. Working Group for the Bay of Biscay and the Iberian Waters Ecoregion (WGBIE).ICES Sci. Rep. 3:48.
Jørgensen C., Enberg K., Dunlop E.S., et al. 2007. Ecology: Managing Evolving Fish Stocks. Sci. 318: 1247-1248. https://doi.org/10.1126/science.1148089 PMid:18033868
Junquera S., Roman E., Paz X., Ramilo G. 1999. Changes in Greenland halibut growth, condition and fecundity in the Northwest Atlantic (Flemish Pass, Flemish Cap and southern Grand Banks). Variations in maturation, growth, condition and spawning stock biomass production in groundfish. J. Northwest Atl. Fish. Sci. 25: 17-28. https://doi.org/10.2960/J.v25.a2
Kell L.T., Pilling G.M., O'Brien C.M. 2005. Implications of the climate change for the management of North Sea cod (Gadus morhua). ICES J. Mar. Sci. 62: 1483-149. https://doi.org/10.1016/j.icesjms.2005.05.006
Korta M., Domínguez-Petit R., Murua H., Saborido-Rey F. 2010. Regional variability in reproductive traits of European hake Merluccius merluccius L. populations. Fish. Res. 104: 64-72. https://doi.org/10.1016/j.fishres.2009.03.007
Korta M., García, D., Santurtún M., et al. 2015. "European Hake (Merluccius merluccius) in the North-east Atlantic," in Hakes: biology and Explotation, ed. H. Arancibia (Hoboken: John Wiley & Sons, Ltd), 1-37. https://doi.org/10.1002/9781118568262.ch1
Köster F.W., Möllmann C. Hinrichsen H.H., et al. 2005. Baltic cod Recruitment - the impact of climate variability on key processes. ICES J. Mar. Sci. 62: 1408-1425. https://doi.org/10.1016/j.icesjms.2005.05.004
Law R. 2000. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57: 659-668. https://doi.org/10.1006/jmsc.2000.0731
Le Cren E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch. J. Anim. Ecol. 2: 201-219. https://doi.org/10.2307/1540
Liermann M., Hilborn R. 2001. Depensation: evidence, models and implications. Fish. Fish. 2: 33-58. https://doi.org/10.1046/j.1467-2979.2001.00029.x
Lorenzen K., Camp E.V. 2019. Density-dependence in the life history of fishes: when is a fish recruited?. Fish. Res. 217: 5-10. https://doi.org/10.1016/j.fishres.2018.09.024
Marshall S., Elliott M. 1998. Environmental influences on the fish assemblage of the Humber estuary. U.K. Estuar. Coast. Shelf Sci. 46:175-184. https://doi.org/10.1006/ecss.1997.0268
Marteinsdottir G., Begg G.A. 2002. Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 235:235-256. https://doi.org/10.3354/meps235235
Meiners-Mandujano C.G. 2007. Importancia de la variabilidad climática en las pesquerías y biología de la merluza europea Merluccius merluccius (Linnaeus, 1758) de la costa Noroccidental Africana. PH.D. Thesis. Universitat Politècnica de Catalunya (UPC) (Spain). 207 pp.
Moritz S., Bartz-Beielstein T. 2017. Imputets: Time Series Missing Value Imputation in R. R J. 9: 207-218. https://doi.org/10.32614/RJ-2017-009
Murua H. 2010. The biology and fisheries of European hake, Merluccius merluccius, in the north-east Atlantic. Adv. Mar. Biol. 58: 97-154. https://doi.org/10.1016/B978-0-12-381015-1.00002-2 PMid:20959157
Nye J.A., Link J.S., Hare J.A., Overholtz W.J. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111-129. https://doi.org/10.3354/meps08220
Nye J. A., Baker M.R., Bell R., et al. 2014. Ecosystem effects of the Atlantic Multidecadal Oscillation. J. Mar. Syst. 133, 103-116. https://doi.org/10.1016/j.jmarsys.2013.02.006
Öckinger E., Schweiger O., Crist T.O., et al. 2010 Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol. Lett. 13: 969-979. https://doi.org/10.1111/j.1461-0248.2010.01487.x PMid:20482577
Olsen E.M., Heino M., Lilly G.R., et al. 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature. 428: 932-935. https://doi.org/10.1038/nature02430 PMid:15118724
Olsen EM, Lilly GR, Heino M, et al. 2005. Assessing changes in age and size at maturation in collapsing populations of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 62:811-823. https://doi.org/10.1139/f05-065
Ottersen G., Planque B., Belgrano A., et al. 2001. Ecological effects of the North Atlantic Oscillation. Oecologia. 128: 1-14. https://doi.org/10.1007/s004420100655 PMid:28547079
Oven L.S. 2004. Resorption of Vitellogenous Oocytes as an Indicator of the State of the Black Sea Fish Populations and Their Environment. Journal of Ichthyology, 44: 115-119.
Pepin P. 2015. Reconsidering the impossible - linking environmental drivers to growth, mortality, and recruitment of fish. Can. J. Fish. Aquat. Sci. 73: 205-215. https://doi.org/10.1139/cjfas-2015-0091
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Version 4.1.2. Vienna, Austria.
Sullivan M.C., Cowen R.K., Steves B.P. 2005. Evidence for atmosphere-ocean forcing of yellowtail flounder (Limanda ferruginea) recruitment in the Middle Atlantic Bight. Fish Oceanogr. 14: 386-399. https://doi.org/10.1111/j.1365-2419.2005.00343.x
Torrejón-Magallanes E.J.2020. sizeMat: Estimate Size at Sexual Maturity. R package version 1.1.2.
Trippel E.A. 1995. Age at maturity as a stress indicator in fisheries. Bioscience. 45:759-771. https://doi.org/10.2307/1312628
Trippel E.A., Kjesbu O.S., Solemdal P. 1997. Effects of adult age and size structure on reproductive output in marine fishes. In Chambers R.C., Trippel E.A. (eds), Early life history and recruitment in fish populations. Chapman and Hall, London, U.K, pp. 31-62. https://doi.org/10.1007/978-94-009-1439-1_2
Wei T., Simko V., Levy M., et al. 2017. Package 'corrplot'. J. Am. Stat. 56: 316-324.
Wood S.N. 2006. Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC. Series: Chapman & Hall/CRC. Texts in Statistical Science.
Wood S.N. 2011. Mgcv: GAMs with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL.
Wood S.N. 2017. Generalized Additive Models: An Introduction with R (2nd edition). Chapman and Hall/CRC, New York, 496 pp.
Zuur A.F., Ieno E.N., Elphick C.S. 2010. A protocol for data exploration to avoid common statistical problems. Methods. Ecol. Evol.1: 3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.x
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Ministerio de Ciencia, Innovación y Universidades
Grant numbers RTI2018-099868-B-I00