Foreword
Downloads
References
Aragón-Noriega EA., García-Juárez A.R. 2007. Comparison of two methods to determine the maturity period in penaeid shrimps (Decapoda, Penaeidae). Crustaceana 80: 513-521. https://doi.org/10.1163/156854007780765579
Barneche D.R., Ross Robertson D., White C.R., Marshall D.J. 2018. Fish reproductive-energy output increases disproportionately with body size. Science 360: 642-645. https://doi.org/10.1126/science.aao6868
Beirão J., Soares F., Herráez M.P., Dinis M.T., Cabrita E. 2011. Changes in Solea senegalensis sperm quality throughout the year. Anim. Reprod. Sci. 126: 122-129. https://doi.org/10.1016/j.anireprosci.2011.04.009
Bekkevold D. 2006. Male size composition affects male reproductive variance in Atlantic cod Gadus morhua L. spawning aggregations. J. Fish Biol. 69: 945-950. https://doi.org/10.1111/j.1095-8649.2006.01140.x
Berkeley S.A., Hixon M.A., Larson R.J., Love M.S. 2004. Fisheries Sustainability via Protection of Age Structure and Spatial Distribution of Fish Populations. Fish. 29: 23-32. https://doi.org/10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2
Bernardo J. 1996. Maternal effects in animal ecology. Amer. Zoolog. 36: 83-105. https://doi.org/10.1093/icb/36.2.83
Chuenpagdee R. 2011. World Small-scale Fisheries: Contemporary Visions. Eburon. Delft (The Netherlands). 400 pp. ISBN: 978-90-5972-539-3.
CONAPESCA. 2017. Anuario Estadístico de Acuacultura y Pesca 2017. Comisión Nacional de Acuacultura y Pesca. Secretaría de Agricultura, Ganadería, Desarrollo rural, Pesca y Alimentación. Gobierno de México. https://www.CONAPESCA.gob.mx/work/sites/cona/dgppe/2017/ANUARIO_ESTADISTICO_2017.pdf
Cortes J., Villamizar A., Nagy G.J., et al. 2020. Coastal marine ecosystems. In Moreno J.M., Laguna-Defior C., V. et al. (eds). Adaptation to climate change risks in Ibero American countries. Mc Grill Hill. Madrid, Spain: 131-160
Diaz M.V, do Souto M., Cohen S., Macchi G.J. 2022. RNA/DNA and derived condition indices for anchovy and hake larvae as relevant information for comprehensive fisheries management. In: Bahamon N., Domínguez-Petit R., Páramo J.E., Saborido-Rey F., Acero-Pizarro A. (eds).
Iberoamerican Fisheries and Fish Reproductive Ecology. Sci. Mar. 86:e 049. https://doi.org/10.3989/scimar.05288.049
Divino J.N., Tonn W.M. 2008. Importance of Nest and Paternal Characteristics for Hatching Success in Fathead Minnow. Copeia 2008: 920-930. https://doi.org/10.1643/CE-06-245
Domínguez-Petit R., Garcia-Fernandez C., Leonarduzzi E., Rodrigues K., Macchi G.J. 2022a. Parental effects and reproductive potential of fish and marine invertebrates: Cross-generational impact of environmental experiences. In: Domínguez-Petit R. (ed). Impact of Environmental Stress on Reproductive Processes of Aquatic Animals. Fishes. 7: 188. https://doi.org/10.3390/fishes7040188
Domínguez-Petit R., Navarro M.R., Cousido-Rocha M., et al. 2022b. Spatial variability of life-history parameters of the Atlantic chub mackerel (Scomber colias), an expanding species in the northeast Atlantic. In: Bahamon N., Domínguez-Petit R., Páramo J.E., Saborido-Rey F., Acero-Pizarro A. (eds). Iberoamerican Fisheries and Fish Reproductive Ecology. Sci. Mar. 86: e048. https://doi.org/10.3989/scimar.05296.048
FAO. 2003. The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries. 4(2). Rome, FAO. 112 pp.
FAO. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en
Gall G.A.E. 1974. Influence of size of eggs and age of female on hatchability and growth in rainbow trout. California Fish and Game Journal, 60, 26-35.
Garcia S., Cochrane K.L. 2005. Ecosystem approach to fisheries: a review of implementation guidelines. ICES J. Mar. Sci. 62: 311-318. https://doi.org/10.1016/j.icesjms.2004.12.003
Gonzalez-Carrion F., Saborido-Rey F. 2022. Influence of maternal effects and temperature on fecundity of Sebastes fasciatus on the Flemish Cap. In: Bahamon N., Domínguez-Petit R., Páramo J.E., Saborido-Rey F., Acero-Pizarro A. (eds). Iberoamerican Fisheries and Fish Reproductive Ecology. Sci. Mar. 86: e050. https://doi.org/10.3989/scimar.05305.050
Green B.S. 2008. Chapter 1 Maternal Effects in Fish Populations. Advances in Marine Biology. Academic Press. 1-105. https://doi.org/10.1016/S0065-2881(08)00001-1
Green B.S., McCormick M.I. 2005. Maternal and paternal effects determine size, growth and performance in larvae of a tropical reef fish. Mar. Ecol. Prog. Ser. 289: 263-272. https://doi.org/10.3354/meps289263
Hilborn R., Walters C.J. 1992. Quantitative fisheries stock assessment. Choice, Dynamics and Uncertainty. Chapman and Hall. https://doi.org/10.1007/978-1-4615-3598-0
Hunter J. 1981. Feeding Ecology and Predation of Marine Fish Larvae. In R. Lasker (ed), Marine fish larvae: morphology ecology and relation to fisheries. Washington Sea Grant Program, Seattle. 33-77.
IBAMA. 2009. Estatística da pesca 2007 Brasil: grandes regiões e unidades da federação. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Brasília. 175 pp. http://www.IBAMA.gov.br/sophia/cnia/livros/estatisticadepescadigital.pdf
INEGI. 2021. Pesca y acuicultura: Censos Económicos 2019. Instituto Nacional de Estadística y Geografía. Gobierno de México. vii+58 pp. https://www.INEGI.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvINEGI/productos/nueva_estruc/702825198978.pdf
Kjesbu O.S., Krivit H., Sundby S., Solemdal, P. 1992. Buoyancy variations in eggs of cod in relation to chorion thickness and egg size theory and observations. J. Fish Biol. 41: 581-599. https://doi.org/10.1111/j.1095-8649.1992.tb02685.x
Kjesbu O.S., Witthames P.R., Solemdal P., Walker M.G. 1990. Ovulatory Rhythm and a Method to Determine the Stage of Spawning in Atlantic Cod (Gadus morhua). Can. J. Fish. Aquatic Sci. 47: 1185-1193. https://doi.org/10.1139/f90-138
Lambert T.C. 1990. The effect of population structure on recruitment in herring. ICES J. Mar. Sci. 47: 249-255. https://doi.org/10.1093/icesjms/47.2.249
Leggett W.C., Deblois E. 1994. Recruitment in marine fishes: Is it regulated by starvation and predation in the egg and larval stages? Neth. J. Sea Res. 32: 119-134. https://doi.org/10.1016/0077-7579(94)90036-1
Lojo D., Cousido-Rocha M., Cerviño S., et al. 2022. Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters. In: Bahamon N., Domínguez-Petit R., Páramo J.E., Saborido-Rey F., Acero-Pizarro A. (eds). Iberoamerican Fisheries and Fish Reproductive Ecology. Sci. Mar. 86: e046. https://doi.org/10.3989/scimar.05287.046
Lopez-Galindo L., Galindo-Sánche, C., Olivares A., et al. 2019. Reproductive performance of Octopus maya males conditioned by thermal stress. Ecol. Ind. 96: 437-447. https://doi.org/10.1016/j.ecolind.2018.09.036
Lowerre-Barbieri, Susan K. 2009. Reproduction in Relation to Conservation and Exploitation of Marine Fishes. In: Barrie G M Jamieson (ed). Reproductive Biology and Phylogeny of Fishes. 371-94. CRC Press. https://doi.org/10.1201/b10257-11
Lowerre-Barbieri S. K., DeCelles G., Pepin P., et al. 2017. Reproductive resilience: a paradigm shift in understanding spawner-recruit systems in exploited marine fish. Fish Fish. 18: 285-312. https://doi.org/10.1111/faf.12180
Macal-López K.C., Brulé T., Torres-Villegas J.R., et al. 2022. Reproduction of grey snapper (Teleostei: Lutjanidae) in the southern Gulf of Mexico. In: Bahamon N., Domínguez-Petit R., Páramo J.E., Saborido-Rey F., Acero-Pizarro A. (eds). Iberoamerican Fisheries and Fish Reproductive Ecology. Sci. Mar. 86: e047. https://doi.org/10.3989/scimar.05293.047
Macchi G.J., Pajaro M., Ehrlich M. 2004. Seasonal egg production pattern of the Patagonian stock of Argentine hake (Merluccius hubbsi). Fish. Res. 67: 25-38. https://doi.org/10.1016/j.fishres.2003.08.006
Macchi G.J., Pajaro M., Madirolas A. 2005. Can a change in the spawning pattern of Argentine hake (Merluccius hubbsi) affect its recruitment? Fish. Bull. 103: 445-452
Macchi G. J., Rodrigues K., Leonarduzzi E., Diaz M.V. 2018. Is the spawning frequency of Argentine hake, Merluccius hubbsi, affected by maternal attributes or physical variables? Fish. Res. 204: 147-155. https://doi.org/10.1016/j.fishres.2018.02.011
Marshall C.T. 2016. Implementing Information on Stock Reproductive Potential in Fisheries Management: The Motivation, Challenges and Opportunities. In: Jakobsen T., Fogarty M.J., Megrey B.A. Moksness E. (eds). Fish Reproductive Biology: Implications for Assessment and Management. Chichester: John Wiley & Sons. 438-464. https://doi.org/10.1002/9781118752739.ch11
Marteinsdottir G., Steinarsson A. 1998. Maternal influence on the size and viability of Iceland cod Gadus morhua eggs and larvae. J. Fish Biol. 52: 1241-1258. https://doi.org/10.1111/j.1095-8649.1998.tb00969.x
Marteinsdottir G., Thorarinsson K. 1998. Improving the stock-recruitment relationship in Icelandic cod (Gadus morhua) by including age diversity of spawners. Can. J. Fish. Aquatic Sci. 55: 1372-1377. https://doi.org/10.1139/f98-035
McCormick M.I. 2006. Mothers matter: Crowding leads to stressed mothers and smaller offspring in marine fish. Ecol. 87: 1104-1109. https://doi.org/10.1890/0012-9658(2006)87[1104:MMCLTS]2.0.CO;2
Moreno P., Claramunt G. 2022. Expansion and contraction of the Engraulis ringens spawning area in northern Chile. In: Bahamon N., Domínguez-Petit R., Páramo J.E., Saborido-Rey F., Acero-Pizarro A. (eds). Iberoamerican Fisheries and Fish Reproductive Ecology. Sci. Mar. 86: e045. https://doi.org/10.3989/scimar.05284.045
Nissling A., Larsson R., Vallin L., Frohlund K. 1998. Assessment of egg and larval viability in cod, Gadus morhua: Methods and results from an experimental study. Fish. Res. 38: 169-186. https://doi.org/10.1016/S0165-7836(98)00121-0
Oliveira Leis M.D., Barragan-Paladines M.J., Saldaña A., et al. 2019. Overview of small-scale fisheries in Latin America and the Caribbean: challenges and prospects. In: Salas S., Barragan-Paladines M.J. and Chuenpagdee R. (eds). Viability and sustainability of small-scale fisheries in Latin America and the Caribbean. MARE publication Series. Vol. 19. Springer, Cham. 15-47. https://doi.org/10.1007/978-3-319-76078-0_2
Olsen E.M., Heino M., Lilly G. R., et al. 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428: 932-935. https://doi.org/10.1038/nature02430
Paramo J., Grijalba-Bendeck M., Pérez D., et al. 2020. Conservation strategies for potential new deep-sea crustacean fisheries in the Colombian Caribbean under an ecosystem approach. In: Hendrickx M. (ed). Deep-Sea Pycnogonids and crustaceans of the Americas. Cham, Switzerland: Springer. pp. 421-441. https://doi.org/10.1007/978-3-030-58410-8_18
Pascual-Fernández J.J., Florido-del-Corral D., Cruz-Modino R.D., Villasante S. 2020. Small-scale fisheries in Spain: diversity and challenges. In: Small-Scale Fisheries in Europe: Status, Resilience and Governance. Springer, Cham. 253-281. https://doi.org/10.1007/978-3-030-37371-9_13
Pauly D., Liang C. 2022. A reconceptualization of the interactions between spawning and growth in bony fish. In: Bahamon N., Domínguez-Petit R., Páramo J.E., Saborido-Rey F., Acero-Pizarro A. (eds). Iberoamerican Fisheries and Fish Reproductive Ecology. Sci. Mar. 86: e044. https://doi.org/10.3989/scimar.05280.044
Pauly D., Zeller D. 2015. Sea Around Us concepts, design and data. https://www.seaaroundus.org. Accessed 20 October 2022.
Petitgas P., Reid D., Planque B., et al. 2006. The entrainment hypothesis: an explanation for the persistence and innovation in spawning migrations and life cycle spatial patterns. ICES Scientific Report. ICES CM 2006/B:07. https://www.ices.dk/sites/pub/CM%20Doccuments/2006/B/B0706.pdf
PRODUCE. 2021. Anuario Estadístico Pesquero y Acuícola 2020. Ministerio de la Producción. Gobierno del Perú. 182 pp.
Puerto M.A., Saber S., Ortiz de Urbina J., et al. 2022. Spawning area of the tropical Skipjack Tuna, Katsuwonus pelamis (Scombridae), in the western Mediterranean Sea. In: Bahamon N., Domínguez-Petit R., Páramo J.E., Saborido-Rey F., Acero-Pizarro A. (eds). Iberoamerican Fisheries and Fish Reproductive Ecology. Sci. Mar. 86: e051. https://doi.org/10.3989/scimar.05292.051
Rideout R. M., Trippel E., Litvak, M. 2004. Relationship between sperm density, spermatocrit, sperm motility and spawning date in wild and cultured haddock. J. Fish Biol. 65: 319-332. https://doi.org/10.1111/j.0022-1112.2004.00451.x
Rochet M.J. 1998. Short-term effects of fishing on life history traits of fishes. ICES J. Mar. Sci. 55: 371-391. https://doi.org/10.1006/jmsc.1997.0324
Rivero-Rodriguez S.,González-Fernandez M. 2021. Ecología Reproductiva y Pesquerías en el Contexto Iberoamericano. Red Iberoamericana de Investigación para el Uso Sostenible de los Recursos Pesqueros (RED INVIPESCA). Digital CSIC. Vigo. ISBN: 978-84-09-36793-1. http://hdl.handle.net/10261/255913.175-215
Saborido-Rey, F. 2016. Fish Reproduction. Reference Module in Earth Systems and Environmental Sciences. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409548-9.09708-6
Seeliger U., Kjerfve B. 2013. Coastal marine ecosystems of Latin America. Vol. 144. Springer Science & Business Media. ISBN: 978-3-662-04482-7
SERNAPESCA. 2021. Anuarios Estadísticos de Pesca y Acuicultura. Ministerio de Economía, Fomento y Turismo. Gobierno de Chile. http://www.SERNAPESCA.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura
SGP. 2021. La Flota Española: Situación a 31 de diciembre de 2021. Secretaría General de Pesca. Ministerio de Agricultura, Pesca y Alimentación. Gobierno de España. https://www.mapa.gob.es/es/pesca/temas/registro-flota/catalogo-flota-2021_22-2-22_tcm30-609098.pdf
Shama L. N. S., Strobel A., Mark F. C., Wegner K. M. 2014. Transgenerational plasticity in marine sticklebacks: Maternal effects mediate impacts of a warming ocean. Funct. Ecol. 28: 1482-1493. https://doi.org/10.1111/1365-2435.12280
Shaw S.L., Sass G.G., VanDeHey J A. 2018. Maternal effects better predict walleye recruitment in Escanaba Lake, Wisconsin, 1957-2015: Implications for regulations. Can. J. Fish. Aquatic Sci. 75: 2320-2331. https://doi.org/10.1139/cjfas-2017-0318
Shin Y.J., Rochet M.J., Jennings S., et al. 2005. Using size-based indicators to evaluate the ecosystem effects of fishing, ICES J. Mar. Sci. 62: 384-396, https://doi.org/10.1016/j.icesjms.2005.01.004
SISRGP. 2021. Painel de Embarcações de Pesca Registradas no Sistema Informatizado do Registro Geral da Atividade Pesqueira. Secretaria de Aquicultura e Pesca. Ministério da Agricultura, Pecuária e Abastecimento. https://www.gov.br/agricultura/pt-br/assuntos/aquicultura-e-pesca/cadastro-registro-e-monitoramento/registro-de-embarcacoes/embarcacoes-de-pesca-registradas
SPM. 2019. Informes de Cadena de Valor. Pesca. 2019. Subsecretaría de Programación Microeconómica. Secretaría de Política Económica. Ministerio de Hacienda. Gobierno de Argentina. ISSN: 2525-0221
Stein L. R., Bell A. M. 2014. Paternal programming in sticklebacks. Anim. Behav. 95: 165-171. https://doi.org/10.1016/j.anbehav.2014.07.010
Stearns S.C. 1977. The evolution of life history traits: a critique of the theory and a review of the data. Annu. Rev. Ecol. Syst, 8: 145-171. https://doi.org/10.1146/annurev.es.08.110177.001045
Stearns S.C. 1992. The Evolution of Life Histories. Oxford University Press.
Thomas P., Rahman M. S., Picha M. E., Tan W. 2015. Impaired gamete production and viability in Atlantic croaker collected throughout the 20,000 km2 hypoxic region in the northern Gulf of Mexico. Mar. Poll. Bull. 101: 182-192. https://doi.org/10.1016/j.marpolbul.2015.11.001
Tomkiewicz J., Morgan M. J., Burnett J. and Saborido-Rey F. 2003. Available information for estimating reproductive potential of Northwest Atlantic groundfish stocks. J. Northwest Atl. Fish Sci. 33: 1-21. https://doi.org/10.2960/J.v33.a1
Trippel E.A. 1999. Estimation of stock reproductive potential: history and challenges for Canadian Atlantic gadoid stock assessments. J. Northw. Atl. Fish. Sci. 25: 61-81. https://doi.org/10.2960/J.v25.a6
Trippel E.A., Kraus G., Köster, F. 2005. Maternal and paternal influences on early life history traits and processes of Baltic cod Gadus morhua. Mar. Ecol. Prog. Ser. 303: 259-267. https://doi.org/10.3354/meps303259
UN. 2015. A/RES/70/1. Transforming our world: the 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly of the United Nations on 25 September 2015. https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf
UN. 2017. Resolution XXIX-1. International (UN) Decade of Ocean Science for Sustainable Development. Resolution adopted by the IOC Assembly on 29 June 2017. https://en.unesco.org/sites/default/files/ioc_resolution_xxix-1_e.pdf
UN. 2018. A/RES/72/72. Sustainable fisheries, including through the 1995 Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks, and related instruments. Resolution adopted by the General Assembly the United Nations on 5 December 2017. https://documents-dds-ny.un.org/doc/UNDOC/GEN/N17/421/83/PDF/N1742183.pdf?OpenElement
von Siebenthal B. A., Jacob A., Wedekind C. 2009. Tolerance of whitefish embryos to Pseudomonas fluorescens linked to genetic and maternal effects, and reduced by previous exposure. Fish Shellfish. Immunol. 26: 531-535. https://doi.org/10.1016/j.fsi.2009.02.008
Worm B., Barbier E.B., Beaumont N., et al. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787-790. https://doi.org/10.1126/science.1132294
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Consejo Superior de Investigaciones Científicas
Grant numbers COOPB20376