Patrones de crecimiento del pez linterna Ceratoscopelus maderensis en el Mediterráneo occidental

Autores/as

DOI:

https://doi.org/10.3989/scimar.05106.007

Palabras clave:

crecimiento larvario, crecimiento diario, microestructura del otolito, Myctophidae, peces mesopelágicos

Resumen


En el presente trabajo se describen la edad y los patrones de crecimiento desde la fase larvaria hasta la fase adulta del pez mesopelágico Ceratoscopelus maderensis (familia Myctophidae) del Mediterráneo occidental. Para ello, se analizó el otolito sagitta de 59 individuos capturados en diciembre de 2009. Se identificaron tres zonas en la sagitta, cada una de las cuales se corresponde con una fase del desarrollo ontogenético del pez: larvaria, metamórfica y juvenil-adulta. Asumiendo que los anillos de crecimiento son diarios, la edad de los individuos analizados (de 3.5 a 64 mm de longitud estándar [SL]) oscilaría entre 7 y 332 días. La relación entre el número de incrementos y la SL de los peces se ajustó al modelo de crecimiento de von Bertalanffy (SL=70.5899×(1–exp(–0.0501(t+2.6705))). El patrón de crecimiento de C. maderensis en el Mediterráneo occidental fue similar al previamente descrito para esta especie en el Noreste del Océano Atlántico. A pesar de que, a partir de 40-45 mm SL, las tasas de crecimiento disminuyeron más lentamente en los individuos del Mediterráneo occidental, las diferencias de crecimiento entre estos individuos y los del Noreste del Océano Atlántico no fueron estadísticamente significativas. Los resultados de este estudio aportan nuevos conocimientos sobre la edad y el crecimiento de una de las especies más abundantes del Mar Mediterráneo, lo cual tiene claras implicaciones de cara al estudio y la gestión de los ecosistemas marinos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar-Pereira A., Quijano-Puerto L. 2016. Relations between fish length to weight, and otolith length and weight, of the lionfish Pterois volitans in the Parque Nacional Arrecife Alacranes, southern Gulf of Mexico. Rev. Biol. Mar. Oceanogr. 51: 469-474. https://doi.org/10.4067/S0718-19572016000200025

Anderson T.R., Martin A.P., Lampitt R.S., et al. 2019. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES J. Mar. Sci. 76: 690-701. https://doi.org/10.1093/icesjms/fsx234

Bernal A. Olivar M.P., Maynou F., et al. 2015. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Progr. Oceanogr. 135: 1-17. https://doi.org/10.1016/j.pocean.2015.03.005

Brothers E.B., Mathews C. P., Lasker R. 1976. Daily growth increments in otoliths from larval and adult fishes. Fish. Bull. 74: 1-8.

Burnham K.P., Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer-Verlag, New York.

Burnham K.P., Anderson D.R. 2004. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res., 33: 261-304. https://doi.org/10.1177/0049124104268644

Cavallaro M., Battaglia P., Guerrera M.C., et al. 2019. Structure and ultrastructure study on photophores of the Madeira lanternfish, Ceratoscopelus maderensis (Lowe, 1839), Pisces: Myctophidae. Acta Zool. 100: 89-95. https://doi.org/10.1111/azo.12236

Contreras T., Olivar M.P., Bernal A., et al. 2015. Comparative feeding patterns of early stages of mesopelagic fishes with vertical habitat partitioning. Mar. Biol. 162: 2265-2277. https://doi.org/10.1007/s00227-015-2749-y

Degens E.T., Deuser W.G., Haedrich, R.L.1969. Molecular structure and composition of fish otoliths. Mar. Biol. 2: 105-113. https://doi.org/10.1007/BF00347005

Eckmann R. 2000. The influence of photoperiod and feeding frequency on the distinctness of daily otolith increments in larval whitefish (Coregonus lavaretus L.). Limnologica 30: 102-105. https://doi.org/10.1016/S0075-9511(00)80003-1

Emery W.J., Meincke J. 1986. Global water masses: summary and review. Oceanol. Acta, 9: 383-391.

Estrada M. 1985. Primary production at the deep chlorophyll maximum in the western Mediterranean. In: Gibbs P.E. (ed): Proc. Nineteenth Eur. Mar. Biol. Symp., pp. 135-143. https://doi.org/10.1007/978-1-4899-2248-9_12

Gartner J.V.Jr. 1991a. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. Mar. Biol. 111: 11-20. https://doi.org/10.1007/BF01986339

Gartner J.V.Jr. 1991b. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico (II). Age and growth patterns. Mar. Biol. 111: 21-27. https://doi.org/10.1007/BF01986340

Goodyear R.H., Gibbs R.H.Jr., Roper C.F.E., et al. 1972. Mediterranean biological studies. Smithson. Institution Washington DC Rep. 1-278.

Greely T.M., Gartner J.V.Jr., J.J. Torres. 1999. Age and growth of Electrona Antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar. Biol. 133: 145-158. https://doi.org/10.1007/s002270050453

Gjosaeter H. 1987. Primary growth increments in otoliths of six tropical myctophid species. Biol. Oceanogr. 4: 359-382.

Gjosaeter J., Kawaguchi K.A. 1980. A review of the world resources of mesopelagic fish. FAO Fisheries Technical Paper 193: 1-151.

Handeland S.O., Imsland A.K., Stefansson S.O. 2008. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture. 283: 36-42. https://doi.org/10.1016/j.aquaculture.2008.06.042

Harvey J.T., Loughlin T.R., Perez M.A., et al. 2000. Relationship between fish size and otolith length for 63 species of fishes from the eastern North Pacific Ocean. NOAA/National Marine Fisheries Service, Seattle. NOAA Tech. Rep. NMFS 150: 1-36.

Hayashi A., Kawaguchi K., Watanabe H., et al. 2001. Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fish. Sci. 67: 811-817. https://doi.org/10.1046/j.1444-2906.2001.00327.x

Houpert L., Testor P., Durrieu de Madron X., et al. 2015. Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Prog. Oceanogr. 132: 333-352. https://doi.org/10.1016/j.pocean.2014.11.004

Hulley P.A. 1981. Results of the research cruises of FRV "Walther Herwig" to South America. LVIII. Family Myctophidae. Archiv. Fischwiss. 31: 1-300.

Hulley P.A. 1984. Myctophidae. In: Whitehead P.J.P., Bauchot M.L., et al. (eds), Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO. 1: 429-483.

Jonsson G. 1992. Islenskir fiskar. Fiolvi. Reykjavik, Iceland. pp. 568. Kendall A. W., Ahlstrom E.H., Moser H.G. 1984. Early life history stages of fishes and their characters. In: Moser H.G., Richards W.J., Cohen D.M et al. (eds), Ontogeny and Systematics of Fishes, Am. Soc. Ichthyol. Herpetol. 1: 11-22.

Linkowsky T.B., Radtke R.L., Lenz, P.H., 1993. Otolith microstructure, age and growth of two species of Ceratoscopelus (Osteichthyes: Myctophidae) from the eastern North Atlantic. Jour. Exp. Mar. Biol. Ecol. 167: 237-260. https://doi.org/10.1016/0022-0981(93)90033-K

Methot R.D. Jr, Kramer D. 1981. Growth of northern anchovy, Engraulis mordax, and northern lampfish, Stenobrachius leucopsarus. Rapp. P-v. R.un. Cons. Int. l'Explor. Mer 178: 424-431.

Moku M., Hayashi A., Mori K., et al. 2005. Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp. J. Fish Biol. 67: 1481-1485. https://doi.org/10.1111/j.0022-1112.2005.00824.x

Morales-Nin B.1992. Determination of growth in bony fishes from otolith microstructure. FAO Fisheries Technical Paper. No. 322. Rome, FAO. 51pp. http://www.fao.org/3/t0529e/T0529E00.htm

Morales-Nin B. 2000. Review of the growth regulation processes of otolith daily increment formation. Fish. Res. 46: 53-67. https://doi.org/10.1016/S0165-7836(00)00133-8

Morel A., Andr. J.M. 1991. Pigment Distribution and Primary Production in the western Mediterranean as derived and modelled from coastal zone color scanner observations. J. Geophys. Res., 96 C7: 12685-12698. https://doi.org/10.1029/91JC00788

Moser H.G., Watson W. 2006. Myctophidae. In: Richards W.J. (eds), Early Stages of Atlantic Fishes: An identification guide for the western central North Atlantic. Taylor and Francis Group, U.S., pp. 473-589.

Mytilineou C., Politou C.Y., Papaconstantinou C., et al. 2005. Deep-water fish fauna in the Eastern Ionian Sea. Belg. J. Zool. 135: 229-233.

Naciri M., Lemaire C., Borsa P. et al. 1999. Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax), J.Hered. 90: 591-596. https://doi.org/10.1093/jhered/90.6.591

Ogle D.H. 2016. Introductory fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton. https://doi.org/10.1201/b19232

Olivar M.P., Bernal A., Mol. B. et al. 2012. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep-Sea Res. I 62: 53-69. https://doi.org/10.1016/j.dsr.2011.12.014

Olivar M.P., Sabat.s A., Alemany F., et al. 2014. Diel-depth distributions of fish larvae off the Balearic Islands (western Mediterranean) under two environmental scenarios. J. Mar. Syst. 138: 127-138. https://doi.org/10.1016/j.jmarsys.2013.10.009

Olivar M.P., Contreras T., Hulley P.A., et al. 2018. Variation in the diel vertical distributions of larvae and transforming stages of oceanic fishes across the tropical and equatorial Atlantic. Progr. Oceanogr. 160: 83-100. https://doi.org/10.1016/j.pocean.2017.12.005

Ozawa T., Pe.aflor C. 1990. Otolith Microstructure and early ontogeny of a myctophid species, Benthosema pterotum. Nippon Suisan Gakk. 56: 1987-1995. https://doi.org/10.2331/suisan.56.1987

Ratke R.L., Dean J.M. 1982. Increment formation in the otoliths of embryos, larvae, and juveniles of the mummichog, Fundulus heteroclitus. Fish. Bull. 80: 201-215.

Richards W.J. 2005. Early stages of Atlantic fishes: An identification guide for the western central North Atlantic. Taylor & Francis, Boca Raton, FL. 1: 524-525. https://doi.org/10.1201/9780203500217

Ricker W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 207-211.

Rountrey A.N., Coulson P.G., Meeuwig J.J., et al. 2014. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Glob. Change Biol. 20: 2450-2458. https://doi.org/10.1111/gcb.12617 PMid:24862838

Salat J., Garc.a M.A., Cruzado A., et al. 2002. Seasonal changes of water mass structure and shelf slope exchanges at the Ebro shelf (NW Mediterranean). Cont. Shelf Res.22: 327-346. https://doi.org/10.1016/S0278-4343(01)00031-0

Sarmiento-Lezcano A., Triay-Portella R., Castro J.J., et al. 2018. Age-based life-history parameters of the mesopelagic fish Notoscopelus resplendens (Richardson, 1845) in the Central Eastern Atlantic. Fish. Res. 204: 412-423. https://doi.org/10.1016/j.fishres.2018.03.016

Sassa C., Takahashi M. 2018. Comparative larval growth and mortality of mesopelagic fishes and their predatory impact on zooplankton in the Kuroshio region. Deep-Sea Res. I 131: 121-132. https://doi.org/10.1016/j.dsr.2017.11.007

Sassa C., Kawaguchi K., Hirota Y., et al. 2007. Distribution depth of the transforming stage larvae of myctophid fishes in the subtropical-tropical waters of the western North Pacific. Deep-Sea Res. I 54: 2181-2193. https://doi.org/10.1016/j.dsr.2007.09.006

Sassa C., Takahashi M., Tsukamoto Y. 2015. Distribution, hatch-date, growth, and mortality of larval Benthosema pterotum (Pisces: Myctophidae) in the shelf region of the East China Sea. J. Mar. Biol. Assoc. U.K. 95: 161-174. https://doi.org/10.1017/S0025315414001209

Saunders R.A., Louren.o S., Vieira R.P., et al. 2020. Age and growth of Brauer's lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean. J. Fish. Biol.96:364-377. https://doi.org/10.1111/jfb.14206 PMid:31729022

Secor D.H., Dean J.M., Laban E.H. 1991. Manual for otolith removal and preparation for microstructure examination. Baruch Inst. Mar. Biol. Coast. Res. 85 pp.

Silva A., Carrera P., Mass. J., et al. 2008. Geographical variability of sardine growth across the northeastern Atlantic and the Mediterranean Sea. Fish. Res. 90: 56-69. https://doi.org/10.1016/j.fishres.2007.09.011

Stevenson D.K., Campana S.E. 1992. Otolith Microstructure examination and Analysis. Can. B. Fish. Aquat. Sci. 117: 1-126.

St. John M.A., Borja A., Chust G., et al. 2016. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3: 31. https://doi.org/10.3389/fmars.2016.00031

T.ning A.V. 1918. Mediterranean Scopelidae: (Saurus, Aulopus, Chlorophthalmus, and Myctophum). Rep. Danish oceanogr. Exped. 1908-1910, 2(A7): 1-154.

Takagi K., Yatsu A., Moku M., et al. 2006. Age and growth of lanternfishes, Symbolophorus californiensis and Ceratoscopelus warmingii (Myctophidae), in the Kuroshio-Oyashio Transition Zone. Ichthyol. Res.53: 281-289. https://doi.org/10.1007/s10228-006-0346-2

Tom.s J., Panfili J. 2000. Otolith microstructure examination and growth patterns of Vinciguerria nimbaria (Photichthydae) in the tropical Atlantic Ocean. Fish. Res. 46:131-145. https://doi.org/10.1016/S0165-7836(00)00140-5

Tuset V.M., Lombarte A., Assis C.A. 2008. Otolith atlas for the western Mediterranean, north and Central Eastern Atlantic. Sci. Mar. 72S1: 7-198. https://doi.org/10.3989/scimar.2008.72s17

Von Bertalanffy L. 1938. A quantitative theory of organic growth. Hum. Biol. 10: 181-213.

Wang Y., Zhang J., Chen Z., et al. 2018. Age and growth of Myctophum asperum in the South China Sea based on otolith microstructure analysis. Deep-Sea Res. II 167: 121-127. https://doi.org/10.1016/j.dsr2.2018.07.004

Young J.W., Bulman C.M., Blaber S.J.M., et al. 1988. Age and growth of the lanternfish Lampanyctodes hectoris (Myctophidae) from eastern Tasmania, Australia. Mar. Biol. 99: 569-576. https://doi.org/10.1007/BF00392564

Publicado

2021-06-11

Cómo citar

1.
Real E, Bernal A, Morales-Nin B, Molí B, Alvarez I, Pilar Olivar M. Patrones de crecimiento del pez linterna Ceratoscopelus maderensis en el Mediterráneo occidental. Sci. mar. [Internet]. 11 de junio de 2021 [citado 11 de mayo de 2024];85(2):71-80. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893

Número

Sección

Artículos

Datos de los fondos

Instituto Español de Oceanografía
Números de la subvención CTM2008-04489-C03-02

Artículos más leídos del mismo autor/a

1 2 3 > >>