Diel cycle of two recurrent fish sounds from mesophotic coral reefs

Authors

DOI:

https://doi.org/10.3989/scimar.05395.078

Keywords:

French Polynesia, mesophotic coral ecosystems, passive acoustic monitoring, bioacoustics, biophony, fish sounds

Abstract


Mesophotic coral ecosystems (MCEs) are the deepest part of tropical coral reefs, ranging from depths of 30 to over 170 m. Despite their significance, MCEs remain largely unexplored due to the challenges associated with accessing these depths. However, the application of passive acoustic monitoring methods (PAM) is a suitable approach for studying fish communities within these unique habitats. In French Polynesia, recent PAM studies have unveiled a higher occurrence of frequency-modulated fish sounds in MCEs than in shallower reef environments. This study aims to further enhance our understanding of fish sounds in MCEs by examining their diel patterns, focusing specifically on the two most abundant frequency-modulated fish sounds that were recorded at depths of 60 and 120 m at six Polynesian islands. Both sound types occurred predominantly during the beginning and the end of nocturnal periods. The presence and abundance of these sounds exhibited variation between the islands, highlighting potential regional disparities in vocal activity or the bathymetric distribution of the sound-producing species. By characterizing the diel cycles and bathymetric differences in relation to their geographical distribution, this study offers preliminary insights into identifying the potential sound-producing species.

Downloads

Download data is not yet available.

References

Baldwin C.C., Tornabene L., Robertson D.R. 2018. Below the Mesophotic. Sci. Rep. 8: 4920. https://doi.org/10.1038/s41598-018-23067-1 PMid:29559694 PMCid:PMC5861108

Bass A.H., Bodnar D.A., Marchaterre M.A. 1999. Complementary explanations for existing phenotypes in an acoustic communication system. In: Hauser, M. and Konishi, M. (eds), Neural Mechanisms of Communication. MIT Press, pp. 493-514. https://doi.org/10.7551/mitpress/2359.003.0021

Bertucci F., Lejeune P., Payrot J., Parmentier E. 2015. Sound production by dusky grouper Epinephelus marginatus at spawning aggregation sites. J. Fish Biol. 87: 400-421. https://doi.org/10.1111/jfb.12733 PMid:26177857

Bertucci F., Parmentier E., Berthe C., et al. 2017 Snapshot recordings provide a first description of the acoustic signatures of deeper habitats adjacent to coral reefs of Moorea. PeerJ 2017(11). https://doi.org/10.7717/peerj.4019 PMid:29158970 PMCid:PMC5691791

Bertucci F., Maratrat K., Berthe C., et al. 2020. Local sonic activity reveals potential partitioning in a coral reef fish community. Oecologia 193: 125-134. https://doi.org/10.1007/s00442-020-04647-3 PMid:32285197

Desiderà E., Guidetti P., Panzalis P., et al. 2019. Acoustic fish communities: Sound diversity of rocky habitats reflects fish species diversity. Mar. Ecol. Prog. Ser. 608: 183-197. https://doi.org/10.3354/meps12812

Di Iorio L., Raick X., Parmentier E., et al. 2018. 'Posidonia meadows calling': a ubiquitous fish sound with monitoring potential. Remote Sens. Ecol. Conserv. 4: 248-263. https://doi.org/10.1002/rse2.72

Kahng S., Copus J.M., Wagner D. 2016. Mesophotic Coral Ecosystems. In: Rossi S., Bramanti L., et al. (eds), Marine Animal Forests. Springer, pp. 1-22. https://doi.org/10.1007/978-3-319-17001-5_4-1

Lobel P.S. 1992. Sounds produced by spawning fishes. Environ. Biol. Fishes 33, 351-358. https://doi.org/10.1007/BF00010947

Lugli M., Torricelli P., Pavan G., Mainardi D. 1997. Sound production during courtship and spawning among freshwater gobiids (pisces, Gobiidae). Mar. Freshw. Behav. Physiol. 29: 109-126. https://doi.org/10.1080/10236249709379003

Mélotte G., Raick X., Vigouroux R., Parmentier E. 2019. Origin and evolution of sound production in Serrasalmidae. Biol. J. Linn. Soc. 128: 403-414. https://doi.org/10.1093/biolinnean/blz105

Mooney T.A., Kaplan M.B., Izzi A., Lamoni L., Sayigh L. 2016. Temporal trends in cusk eel sound production at a proposed US wind farm site. Aquat. Biol. 24: 201-210. https://doi.org/10.3354/ab00650

Parmentier E., Kéver L., Casadevall M., Lecchini D. 2010. Diversity and complexity in the acoustic behaviour of Dacyllus flavicaudus (Pomacentridae). Mar. Biol. 157: 2317-2327. https://doi.org/10.1007/s00227-010-1498-1

Parmentier E., Lecchini D., Mann D.A. 2016. Sound Production in Damselfishes. In: Frederich, B. and Parmentier, E. (eds), Biology of Damselfishes. Taylor and Francis, Boca Raton, pp. 204-228.

Parmentier E., Raick X., Lecchini D., et al. 2017. Unusual sound production mechanism in the triggerfish Rhinecanthus aculeatus (Balistidae). J. Exp. Biol. 220: 186-193. https://doi.org/10.1242/jeb.146514 PMid:27802144

Parmentier E., Solagna L., Bertucci F., et al. 2019. Simultaneous production of two kinds of sounds in relation with sonic mechanism in the boxfish Ostracion meleagris and O. cubicus. Sci. Rep. 9, 4962: 1-13. https://doi.org/10.1038/s41598-019-41198-x PMid:30899084 PMCid:PMC6428821

Parmentier E., Bertucci F., Bolgan M., Lecchini D. 2021. How many fish could be vocal? An estimation from a coral reef (Moorea Island). Belgian J. Zool. 151: 1-29. https://doi.org/10.26496/bjz.2021.82

Pichon M. 2019. French Polynesia. In: Loya Y., Puglise K.A., Bridge T.C.L. (eds), Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, pp. 425-444.

Pinheiro H.T., Goodbody-Gringley G., et al. 2016. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35: 139-151. https://doi.org/10.1007/s00338-015-1381-0

Pyle R.L., Boland R., Bolick H., et al. 2016. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 2016: 1-45. https://doi.org/10.7717/peerj.2475 PMid:27761310 PMCid:PMC5068450

Raick X., Huby A., Kurchevski G., Godinho A.L., Parmentier, É. 2020. Use of bioacoustics in species identification: piranhas from genus Pygocentrus (Teleostei: Serrasalmidae) as a case study. PLoS ONE 15: e0241316. https://doi.org/10.1371/journal.pone.0241316 PMid:33119694 PMCid:PMC7595327

Raick X., Di Iorio L., Gervaise C., et al. 2021a. From the Reef to the Ocean: Revealing the Acoustic Range of the Biophony of a Coral Reef (Moorea Island, French Polynesia). J. Mar. Sci. Eng. 9: 420. https://doi.org/10.3390/jmse9040420

Raick X., Rountree R., Kurchevski G., et al. 2021b. Acoustic homogeneity in the piranha Serrasalmus maculatus. J. Fish Biol. jfb.14662. https://doi.org/10.1111/jfb.14662 PMid:33373041

Raick X., Di Iorio L., Lecchini D., et al. 2023a. Fish sounds of photic and mesophotic coral reefs: variation with depth and type of island. Coral Reefs 42: 285-297. https://doi.org/10.1007/s00338-022-02343-7

Raick X., Di Iorio L., Lecchini D., Bolgan M., Parmentier E. 2023b. "To be, or not to be": critical assessment of the use of α-acoustic diversity indices to evaluate the richness and abundance of coastal marine fish sounds. Journal of Ecoacoustics 7: 1 https://doi.org/10.35995/jea7010001

Raick, X, Godinho, A. L., Kurchevski, G., Huby, A., Parmentier, E. 2023c, Bioacoustics supports genus identification in piranhas. J. Acous. Soc. Am. Accepted https://doi.org/10.1121/10.0021308 PMid:37815413

Rice A.N., Bass A.H. 2009. Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: Insights into the diversity of the Batrachoididae. J. Exp. Biol. 212: 1377-1391. https://doi.org/10.1242/jeb.028506 PMid:19376959 PMCid:PMC2726849

Rice A.N., Farina S.C., Makowski A.J., et al. 2022. Evolutionary Patterns in Sound Production across Fishes. Ichthyol. Herpetol. 110. https://doi.org/10.1643/i2020172

Rougerie F., Fichez R., Déjardin P. 1997. Geomorphology and hydrogeology of selected islands of French Polynesia: Tikeahau (atoll) and Tahiti (barrier reef). In: Vacher H. L., Quinn T. (eds), Geology and Hydrogeology of Carbonate Islands. Developments in Sedimentology 54. Elsevier Science, pp. 475-502. https://doi.org/10.1016/S0070-4571(04)80037-2

Rountree R.A., Juanes F., Bolgan M. 2018. Air movement sound production by alewife, white sucker, and four salmonid fishes suggests the phenomenon is widespread among freshwater fishes. PLoS ONE 13: e0204247. https://doi.org/10.1371/journal.pone.0204247 PMid:30235287 PMCid:PMC6147564

Rouzé H., Galand P.E., Medina M., et al. 2021. Symbiotic associations of the deepest recorded photosynthetic scleractinian coral (172 m depth). ISME J. 15: 1564-1568. https://doi.org/10.1038/s41396-020-00857-y PMid:33452473 PMCid:PMC8115523

Ruppé L., Clément G., Herrel A., et al. 2015. Environmental constraints drive the partitioning of the soundscape in fishes. Proc. Natl. Acad. Sci., 112: 6092-6097. https://doi.org/10.1073/pnas.1424667112 PMid:25848025 PMCid:PMC4434729

Siu G., Bacchet P., Bernardi G., et al. 2017. Shore fishes of French Polynesia. Cybium 41: 245-278.

Smith M.E., Weller K.K., Kynard B., Sato Y., Godinho, A.L. 2018. Mating calls of three prochilodontid fish species from Brazil. Environ. Biol. Fishes 101: 327-339. https://doi.org/10.1007/s10641-017-0701-3

Tower R.W. 1908. The production of sound in the drumfishes, the sea-robin and the toadfish. Ann. N. Y. Acad. Sci. 18: 149-180. https://doi.org/10.1111/j.1749-6632.1908.tb55101.x

Published

2023-12-20

How to Cite

1.
Raick X, Collet P, The Pole Consortium U, Lecchini D, Bertucci F, Parmentier E. Diel cycle of two recurrent fish sounds from mesophotic coral reefs. Sci. mar. [Internet]. 2023Dec.20 [cited 2024Apr.27];87(4):e078. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1977

Issue

Section

Articles

Funding data

Agence Nationale de la Recherche
Grant numbers ANRAAPG 2017 #168722