Estabilidad de las relaciones entre las agrupaciones de peces demersales y los factores ambientales-actividad pesquera a gran escala espacio-temporal en el norte del mar Mediterráneo

Autores/as

DOI:

https://doi.org/10.3989/scimar.04954.30A

Palabras clave:

composición específica, estabilidad, agrupaciones demersales, medio ambiente, presión pesquera, gran escala, análisis de co-inercia, STATISTICO-CoA

Resumen


La presión pesquera y los cambios ambientales pueden afectar a la composición de las agrupaciones de peces. En el Mediterráneo, nuestro conocimiento a gran escala sobre los patrones espacio-temporales de la composición de especies de peces demersales sigue siendo incompleto. Investigamos (1) la estabilidad espacio-temporal de las agrupaciones demersales (2) las relaciones entre dichas agrupaciones y los posibles factores estructurantes (presión pesquera de arrastre y condiciones ambientales) para evaluar la dinámica de la estructura de las agrupaciones en el norte del mar Mediterráneo. Analizamos un conjunto de 18062 lances entre 10 y 800 m. de profundidad realizados anualmente, durante las últimas dos décadas, en 17 sub-áreas geográficas (GSAs) (Proyecto MEDITS). El análisis multi-tablas (STATICO-CoA) evidenció una fuerte estabilidad inter-GSAs en la organización de agrupaciones, con especificidades para algunas GSAs. Los factores estructurantes más estables se relacionaron con los gradientes combinados de clorofila a, fitoplancton, carbono y temperatura, correlacionados inversamente con los gradientes de profundidad, salinidad y nutrientes (eje 1 del STATICO-CoA, 93.74% de la variabilidad total). En la mayoría de las GSAs encontramos un patrón común que vincula la distribución de las especies a estos gradientes ambientales. La estimación de la presión pesquera de arrastre mostró un papel menor en la organización de las agrupaciones para la escala espacial y los años investigados (eje 2, 4.67%).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ansari Z.A., Chatterji A., Ingole B.S., et al. 1995. Community Structure and Seasonal Variation of an Inshore Demersal Fish Community at Goa, West Coast of India. Estuar. Coast. Shelf Sci. 41: 593-610. https://doi.org/10.1016/0272-7714(95)90029-2

Ben Rais Lasram F., Guilhaumon F., Albouy C., et al. 2010. The Mediterranean Sea as a "cul-de-sac" for endemic fishes facing climate change. Glob. Chang. Biol. 16: 3233-3245. https://doi.org/10.1111/j.1365-2486.2010.02224.x

Bertrand J.A., De Sola L., Papaconstantinou C., et al. 2002a. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17. https://doi.org/10.3989/scimar.2002.66s29

Bertrand J.A., Leonori I., Dremiere P.Y., et al. 2002b. Depth trajectory and performance of a trawl used for an international bottom trawl survey in the Mediterranean. Sci. Mar. 66: 169-182. https://doi.org/10.3989/scimar.2002.66s2169

Brind'Amour A., Rochet M.J., Ordines F., et al. 2016. Environmental drivers explain regional variation of changes in fish and in vertebrate functional groups across the Mediterranean Sea from 1994 to 2012. Mar. Ecol. Prog. Ser. 562: 19-35. https://doi.org/10.3354/meps11912

Carassou L., Ponton D. 2007. Spatio-temporal structure of pelagic larval and juvenile fish assemblages in coastal areas of New Caledonia, southwest Pacific. Mar. Biol. 150: 697-711. https://doi.org/10.1007/s00227-006-0389-y

Certain G., Masse J., Van Canneyt O., et al. 2011. Investigating the coupling between small pelagic fish and marine top predators using data collected from ecosystem-based surveys. Mar. Ecol. Prog. Ser. 422: 23-39. https://doi.org/10.3354/meps08932

Charrad M., Ghazzali N., Boiteau V., et al. 2014. An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 61: 1-36. https://doi.org/10.18637/jss.v061.i06

Coll M., Piroddi C., Steenbeek J., et al. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 5: e11842. https://doi.org/10.1371/journal.pone.0011842 PMid:20689844 PMCid:PMC2914016

Coll M., Piroddi C., Albouy C., et al. 2012. The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21: 465-480. https://doi.org/10.1111/j.1466-8238.2011.00697.x

Colloca F., Spedicato M.T., Massutí E., et al. 2013. Mapping of nursery and spawning grounds of demersal fish. Mediterranean Sensitive Habitats (MEDISEH) Final Report, DG MARE Specific Contract SI2.600741, Heraklion (Greece).

D'Onghia G., Mastrototaro F., Matarrese A., et al. 2003. Biodiversity of the Upper Slope Demersal Community in the Eastern Mediterranean: Preliminary Comparison Between Two Areas With and Without Trawl Fishing. J. Northw. Atl. Fish. Sci. 31: 263-273. https://doi.org/10.2960/J.v31.a20

D'Onghia G., Capezzuto F., Mytilineou Ch., et al. 2005. Comparison of the population structure and dynamics of Aristeus antennatus (Risso, 1816) between exploited and unexploited areas in the Mediterranean Sea. Fish. Res. 76: 22-38. https://doi.org/10.1016/j.fishres.2005.05.007

Dolédec S., Chessel D. 1994. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw. Biol. 31: 277-294. https://doi.org/10.1111/j.1365-2427.1994.tb01741.x

Dray S., Chessel D., Thioulouse J. 2003. Co-inertia analysis and the linking of ecological data tables. Ecology 84: 3078-3089. https://doi.org/10.1890/03-0178

Farriols M.T., Farriols F., Somerfield P.J., et al. 2017. Bottom trawl impacts on Mediterranean demersal fish diversity: Not so obvious or are we too late? Cont. Shelf Res. 137: 84-102. https://doi.org/10.1016/j.csr.2016.11.011

Gaertner J.C., Bertrand J.A., Souplet A. 2002. STATIS-CoA: A methodological solution to assess the spatio-temporal organization of species assemblages. Application to the demersal assemblages of the French Mediterranean Sea. Sci. Mar. 66: 221-232. https://doi.org/10.3989/scimar.2002.66s2221

Gaertner J.C., Bertrand J.A., De Sola L.G., et al. 2005. Large spatial scale variation of dem- ersal fish assemblage structure on the continental shelf of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 297: 245-257. https://doi.org/10.3354/meps297245

Gaertner J.C., Bertrand J., Relini G., et al. 2007. Spatial pattern in species richness of demersal fish assemblages on the continental shelf of the northern Mediterranean Sea: a multiscale analysis. Mar. Ecol. Prog. Ser. 341: 191-203. https://doi.org/10.3354/meps341191

Gaertner J.C., Mérigot B., Rélini G., et al. 2010. Reproducibility of the multi-component aspect of species diversity across different areas and scales: towards the constitution of a shortlist of complementary indices for monitoring fish diversity? Ecography 33: 1123-1135. https://doi.org/10.1111/j.1600-0587.2009.06259.x

Gaertner J.C., Maiorano P., Mérigot B., et al. 2013. Large-Scale Diversity of Slope Fishes: Pattern Inconsistency between Multiple Diversity Indices. PLoS ONE 8: e66753. https://doi.org/10.1371/journal.pone.0066753 PMid:23843962 PMCid:PMC3700978

Gallego-Álvarez I., Galindo-Villardón M., Rodríguez-Rosa M. 2015. Evolution of sustainability indicator worldwide: A study from the economic perspective based on the X-STATICO method. Ecol. Indic. 58: 139-151. https://doi.org/10.1016/j.ecolind.2015.05.025

Granger V., Fromentin J.M., Bez N., et al. 2015. Large-scale spatio-temporal monitoring highlights hotspots of demersal fish diversity in the Mediterranean Sea. Prog. Oceanogr. 130: 65-74. https://doi.org/10.1016/j.pocean.2015.08.002

Greenstreet S.P.R., Hall S.J. 1996. Fishing and the ground-fish assemblage structure in the north-western North Sea: an analysis of long-term and spatial trends. J. Anim. Ecol. 65: 577-598. https://doi.org/10.2307/5738

Hill M.O. 1973. Reciprocal averaging: an eigenvector method of ordination, J. Econ. 61: 237-249. https://doi.org/10.2307/2258931

Kavadas S., Maina I., Damalas D., et al. 2015. Multi-Criteria Decision Analysis as a tool to extract fishing footprints and estimate fishing pressure: application to small scale coastal fisheries and implications for management in the context of the Maritime Spatial Planning Directive. Mediterr. Mar. Sci. 16: 294-304. https://doi.org/10.12681/mms.1087

Kidé O., Manté C., Dubroca L., et al. 2015. Spatio-temporal dynamics of exploited ground-fish assemblages faced to environmental and fishing forcings: Insights from the Mauritanian Exclusive Economic Zone. Plos ONE 10: e0141566. https://doi.org/10.1371/journal.pone.0141566 PMid:26505198 PMCid:PMC4623501

Lavit C., Escoufier Y., Sabatier R., et al. 1994 The ACT (Statis method). Comput. Stat. Data Anal. 18: 97-119. https://doi.org/10.1016/0167-9473(94)90134-1

Le Fur I., De Wit R., Plus M., et al. 2019. Re-oligotrophication trajectories of macrophyte assemblages in Mediterranean coastal lagoons based on 17-year time-series. Mar. Ecol. Prog. Ser. 608: 13-32. https://doi.org/10.3354/meps12814

Lefcheck J.S., Buchheister A., Laumann K.M., et al. 2014. Dimensions of biodiversity in Chesapeake Bay demersal fishes: patterns and drivers through space and time. Ecosphere 5: 14. https://doi.org/10.1890/ES13-00284.1

Levin P.S., Holmes E.E., Piner K.R., et al. 2006. Shifts in a Pacific Ocean Fish Assemblage: the Potential Influence of Exploitation. Conser. Biol. 20: 1181-1190. https://doi.org/10.1111/j.1523-1739.2006.00400.x PMid:16922234

Malczewski J. 2006. GIS-based multi criteria decision analysis: a survey of the literature. Int. J. Geogr. Inf. Sci. 20: 703-726. https://doi.org/10.1080/13658810600661508

Mazzocchi M.G., Dubroca L., García-Comas C., et al. 2012. Stability and resilience in coastal copepod assemblages: The case of the Mediterranean long-term ecological research at Station MC (LTER-MC). Prog. Oceanogr. 97-100: 135-151. https://doi.org/10.1016/j.pocean.2011.11.003

MEDITS Working Group. 2017. MEDITS-Handbook, Version n. 9. MEDITS Working Group, 106 pp. http://www.sibm.it/MEDITS%202011/principaledownload. htm

Mendes S., Fernández-Gómez M.J., Pereira M.J., et al. 2012. An empirical comparison of canonical correspondence analysis and STATICO in the identification of spatio-temporal ecolog- ical relationships. J. App. Stat. 39: 979-994. https://doi.org/10.1080/02664763.2011.634393

Menge B.A., Olson A.M. 1990. Role of scale and environmental factors in the regulation of community structure. Trends Ecol. Evol. 5: 52-57. https://doi.org/10.1016/0169-5347(90)90048-I

Mérigot B., Durbec J.P., Gaertner J.C. 2010. On goodness-of-fit measure for dendrogram-based analyses. Ecology 91: 1850-1859. https://doi.org/10.1890/09-1387.1 PMid:20583725

Mouillot D., Albouy C., Guilhaumon F., et al. 2011. Protected and threatened components of fish biodiversity in the Mediterranean Sea. Curr. Biol. 21: 1044-1050. https://doi.org/10.1016/j.cub.2011.05.005 PMid:21658949

Oddo P., Adani M., Pinardi N., et al. 2009. A nested Atlantic- Mediterranean Sea general circulation model for operational forecasting. Ocean Sci. 5: 461-473. https://doi.org/10.5194/os-5-461-2009

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/

Relini G. 2015. Fish biodiversity in MEDITS surveys. Biol. Mar. Mediterr. 22: 176-177.

Rochet M.J., Trenkel V.M., Carpentier A., et al. 2010. Do changes in environmental and fishing pressures impact marine communities? An empirical assessment. J. Appl. Ecol. 47: 741-750. https://doi.org/10.1111/j.1365-2664.2010.01841.x

Saaty T.L. 1980. The analytical hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York, 309 pp.

Simier M., Blanc L., Pellegrin F. et al. 1999. Approche simultanée de k couples de tableaux: Application à l'étude des relations pathologie végétale-environnement. Rev. Statist. Appl. 47: 31-46.

Simier M., Laurent C., Ecoutin J.M., et al. 2006. The Gambia River estuary: A reference point for estuarine fish assemblages studies in West Africa. Estuar. Coast. Shelf Sci. 69: 615-628. https://doi.org/10.1016/j.ecss.2006.05.028

Slimani N., Guilbert E., El Ayni F., et al. 2017. The use of STATICO and COSTATIS, two exploratory three-ways analysis methods. An application to the ecology of aquatic Heteroptera in the Medjerda watershed (Tunisia). Env. Ecol. Stat. 24: 269-295. https://doi.org/10.1007/s10651-017-0370-6

Thioulouse J. 2011. Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. Ann. App. Stat. 5: 2300-2325. https://doi.org/10.1214/10-AOAS372

Thioulouse J., Simier M., Chessel D. 2004. Simultaneous analysis of a sequence of paired ecological tables. Ecology 85: 272-283. https://doi.org/10.1890/02-0605

Publicado

2019-12-30

Cómo citar

1.
Mérigot B, Gaertner JC, Brind’Amour A, Carbonara P, Esteban A, Garcia-Ruiz C, Gristina M, Imzilen T, Jadaud A, Joksimovic A, Kavadas S, Kolitari J, Maina I, Maiorano P, Manfredi C, Micallef R, Peristeraki P, Relini G, Sbrana M, Spedicato MT, Thasitis I, Vittori S, Vrgoc N. Estabilidad de las relaciones entre las agrupaciones de peces demersales y los factores ambientales-actividad pesquera a gran escala espacio-temporal en el norte del mar Mediterráneo. Sci. mar. [Internet]. 30 de diciembre de 2019 [citado 11 de mayo de 2024];83(S1):153-6. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1820

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 4 > >>