Una nueva aproximación al diagnóstico de la sobrepesca de reclutamiento basada en la condición de los recursos a partir de datos de campaña
DOI:
https://doi.org/10.3989/scimar.04950.03APalabras clave:
Merluccius merluccius, pesquería, reclutas, índice de condición, sobrepesca de reclutamiento, campaña MEDITSResumen
Este trabajo presenta una nueva aproximación al diagnóstico de la sobrepesca de reclutamiento. Nuestra hipótesis consiste en que la condición de los reclutas debe aumentar cuando suceden fallos en el reclutamiento debidos a la actividad pesquera. Esto sería una consecuencia del incremento en la disponibilidad de recursos tróficos debido a que la población es más reducida que la que el ecosistema podría soportar. Se calcularon series temporales de condición de reclutas de merluza a partir de datos recogidos en las campañas MEDITS en las sub-áreas geográficas (GSAs) 1, 6, 17 y 19 entre los años 1994 y 2015. Se utilizó la regresión lineal múltiple para analizar la relación entre la condición media anual y la abundancia de reclutas e índices climáticos en cada GSA. Solo se detectaron correlaciones significativas en la GSA 6, dónde el 69% de la variabilidad en la condición se explica por la correlación negativa con la abundancia de reclutas, y con dos índices climáticos, la Oscilación del Mediterráneo Occidental y la anomalía estandarizada de la temperatura del aire en superficie en el Golfo de León. A pesar de las diferencias en la abundancia de reclutas entre GSAs, su condición anual media osciló alrededor de un mismo valor basal durante la mayor parte de la serie temporal, sugiriendo que las tasas de mortalidad denso-dependiente son un mecanismo importante para la estabilización del reclutamiento de merluza en niveles próximos a la capacidad de carga cuando las poblaciones no sufren sobrepesca de reclutamiento. Este patrón cambió cuando la tendencia decreciente de la abundancia de reclutas elevó los valores de condición en la GSA 6 por encima de los del resto de GSAs de forma persistente. De acuerdo con nuestra hipótesis, la merluza de la GSA 6 se encuentra en sobrepesca de reclutamiento.
Descargas
Citas
Abella A., Fiorentino F., Mannini A., et al. 2008. Exploring relationships between recruitment of European hake (Merluccius merluccius L. 1758) and environmental factors in the Ligurian Sea and the Strait of Sicily (Central Mediterranean). J. Mar. Syst. 71: 279-293. https://doi.org/10.1016/j.jmarsys.2007.05.010
Adams P.B. 1980. Life history patterns in marine fishes and their consequences for fisheries management. Fish. Bull. 78: 1-12.
Alpert P., Ben-Gai T., Baharad A., et al. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 29: 311-314. https://doi.org/10.1029/2001GL013554
Barnston A.G., Livezey R.E. 1987. Classifications, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115: 1083-1126. https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
Bartolino V., Colloca F., Sartor P., et al. 2008. Modelling recruitment dynamics of hake, Merluccius merluccius, in the central Mediterranean in relation to key environmental variables. Fish. Res. 92: 277-288. https://doi.org/10.1016/j.fishres.2008.01.007
Behrendt S. 2014. lm.beta: Add Standardized Regression Coefficients to lm-Objects. R package version 1.5-1. https://CRAN.R-project.org/package=lm.beta
Bertrand J., De Sola L., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17. https://doi.org/10.3989/scimar.2002.66s29
Cowan J.H., Rose K.A., DeVries D.R. 2000. Is density-dependent growth in young-of-the-year fishes a question of critical weight? Rev. Fish Biol. Fish. 10: 61-89. https://doi.org/10.1023/A:1008932401381
Domínguez M.R. 2006. Study of reproductive potential of Merluccius merluccius in the Galician shelf. PhD thesis, Univ. Vigo, 288 pp.
Dremière P.Y., Fiorentini L., Cosimi G., et al. 1999. Escapement from the main body of the bottom trawl used for the Mediterranean international trawl survey (MEDITS). Aquat. Living Resour. 12: 207-217. https://doi.org/10.1016/S0990-7440(00)88471-5
Dutil J.D., Lambert Y. 2000. Natural mortality from poor condition in Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 57: 826-836. https://doi.org/10.1139/f00-023
El Habouz H., Recasens L., Kifani S., et al. 2011. Maturity and batch fecundity of the European hake (Merluccius merluccius, Linnaeus, 1758) in the eastern central Atlantic. Sci. Mar. 75: 447-454. https://doi.org/10.3989/scimar.2011.75n3447
Fiorentini L., Dremière P.Y., Leonori I., et al. 1999. Efficiency of the bottom trawl used for the Mediterranean international trawl survey (MEDITS). Aquat. Living Resour. 12: 187-205. https://doi.org/10.1016/S0990-7440(00)88470-3
General Fisheries Commission for the Mediterranean (GFCM). 2014. Scientific Advisory Committee (SAC). Subcommittee on Stock Assessment (SCSA). Report of the Fifteenth Session. Bar, Montenegro, 3-4 February 2014. 42 pp.
General Fisheries Commission for the Mediterranean (GFCM). 2017. Scientific Advisory Committee (SAC). Working Group on Stock Assessment of Demersal Species (WGSAD). Rome, Italy, 13-18 November 2017. Final report. 70 pp.
Guadayol O., Peters F., Marrasé C., et al. 2009. Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: a time-series analysis. Mar. Ecol. Prog. Ser. 381: 139-155. https://doi.org/10.3354/meps07939
Hayes J., Shonkwiler J. 2001.Morphometric indicators of body condition: worthwhile or wishful thinking? In: Speakman J. (ed.), Body Composition Analysis of Animals: A Handbook of Non-destructive Methods. Cambridge University Press, Cambridge, pp. 8-38. https://doi.org/10.1017/CBO9780511551741.003 PMid:11348409
Hidalgo B., Massutí E., Moranta J., et al. 2008. Seasonal and short spatial patterns in European hake (Merluccius merluccius, L) recruitment process at the Balearic Islands (NW Mediterranean): the role of environment on distribution and condition. J. Mar. Syst. 71: 367-384. https://doi.org/10.1016/j.jmarsys.2007.03.005
Hilborn R. 2002. The dark side of reference points. Bull. Mar. Sci. 70: 403-408.
Hilborn R., Stokes K. 2010. Defining overfished stocks: have we lost the plot? Fisheries 35: 113-120. https://doi.org/10.1577/1548-8446-35.3.113
Lloret J., Faliex E., Shulman G.E., et al. 2012. Fish health and fisheries, implications for stock assessment and management: the Mediterranean example. Rev. Fish. Sci. 20: 165-180. https://doi.org/10.1080/10641262.2012.695817
Lloret J., Shulman G., Love R.M. 2014. Condition and health indicators of exploited marine fishes. Wiley Blackwell, Chichester, 247 pp. https://doi.org/10.1002/9781118752777
López-Bustins J.A. 2007. L'Oscil·lació de la Mediterrània Occidental i la Precipitació als Països Catalans. PhD thesis, Univ. Barcelona, 400 pp.
Lorenzen K. 2008. Fish population regulation beyond "stock and recruitment": the role of density-dependent growth in the recruited stock. Bull. Mar. Sci. 83: 181-196.
MacArthur R., Wilson E.O. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, New Jersey, 203 pp.
Martín P., Sabatés A., Lloret J., et al. 2012. Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim. Chang. 110: 925-939. https://doi.org/10.1007/s10584-011-0091-z
Martín-Vide J., Lopez-Bustins J.A. 2006. The western Mediterranean oscillation and rainfall in the Iberian peninsula. Int. J. Climatol. 26: 1455-1475. https://doi.org/10.1002/joc.1388
Massutí E., Monserrat S., Oliver P., et al. 2008. The influence of oceanographic scenarios on the population dynamics of demersal resources in the western Mediterranean?: Hypothesis for hake and red shrimp off Balearic Islands. J. Mar. Syst. 71: 421-438. https://doi.org/10.1016/j.jmarsys.2007.01.009
Mehault S., Domínguez-Petit R., Cerviño S, et al. 2010. Variability in total egg production and implications for management of the southern stock of European hake. Fish. Res. 104: 111-122. https://doi.org/10.1016/j.fishres.2010.03.019
Mellon-Duval C., de Pontual H., Métral L., et al. 2009. Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci. 67: 62-70. https://doi.org/10.1093/icesjms/fsp215
Mellon-Duval C., Harmelin-Vivien M., Métral L., et al. 2017. Trophic ecology of the European hake in the Gulf of Lions, northwestern Mediterranean Sea. Sci. Mar. 81: 7-18. https://doi.org/10.3989/scimar.04356.01A
Monserrat S., López-Jurado J.L., Marcos M. 2008. A mesoscale index to describe the regional ocean circulation around the Balearic Islands. J. Mar. Syst. 71: 413-420. https://doi.org/10.1016/j.jmarsys.2006.11.012
Morgan M.J. 2004. The relationship between fish condition and the probability of being mature in American plaice (Hippoglossoides platessoides). ICES J. Mar. Sci. 61: 64-70. https://doi.org/10.1016/j.icesjms.2003.09.001
Myers R.A., Rosemberg A.A., Mace P.M., et al. 1994. In search of thresholds for recruitment overfishing. ICES J. Mar. Sci. 51: 191-205. https://doi.org/10.1006/jmsc.1994.1020
Nakatsuka S., Ishida Y., Fukuda H., et al. 2017. A limit reference point to prevent recruitment overfishing of Pacific bluefin tuna. Mar. Policy 78: 107-113. https://doi.org/10.1016/j.marpol.2017.01.017
Oliver P. 1993. Analysis of fluctuations observed in the trawl fleet landings of the Balearic Islands. Sci. Mar. 57: 219-227.
Palutikof J.P. 2003. Analysis of Mediterranean climate data: Measured and modeled. In: Bolle H.J. (ed), Mediterranean Climate: Variability and Trends. Springer, New York, pp. 125-132. https://doi.org/10.1007/978-3-642-55657-9_6
R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Recasens L., Chiericoni V., Belcari P. 2008. Spawning pattern and batch fecundity of the European hake (Merluccius merluccius (Linnaeus, 1758)) in the western Mediterranean. Sci. Mar. 72: 721-732. https://doi.org/10.3989/scimar.2008.72n4721
Restrepo V. 1999. Annotated Glossary of Terms in Executive Summary Reports of the International Commission for the Conservation of Atlantic Tunas' Standing Committee on Research and Statistics (SCRS). ICCAT, Madrid, Spain, 23 pp.
Rose K.A., Cowan J.H, Winemiller K.O., et al. 2001. Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish. 2: 293-327. https://doi.org/10.1046/j.1467-2960.2001.00056.x
Sainsbury K.J., Polacheck T.W. 1993. The use of biological reference points for defining recruitment overfishing, with an application to southern bluefin tuna. In: Hancock D.A. (ed.), Population dynamics for fisheries management, Australian Society for Fish Biology Workshop Proceedings. Australian Society for Fish Biology, Perth, pp. 265-274.
Sánchez R., Sánchez F., Gil J. 2003. The optimal environmental window that controls hake (Merluccius merluccius) recruitment in the Cantabrian Sea. ICES Mar. Sci. Symp. 219: 415-417.
Scientific, Technical and Economic Committee for Fisheries (STECF). 2015. Standardization procedures for data preparation, stock assessment methods and estimate of MSY reference points for Mediterranean stocks (STECF-15-11). Publications Office of the European Union, Luxembourg, 104 pp.
Scientific, Technical and Economic Committee for Fisheries (STECF). 2017. Mediterranean Stock Assessments - Part 2 (STECF-17-15). Publications Office of the European Union, Luxembourg, 663 pp.
Scientific, Technical and Economic Committee for Fisheries (STECF). 2018. Mediterranean Stock Assessments - Part 1 (STECF-18-12). Publications Office of the European Union, Luxembourg, 623 pp.
Sissenwine M.P., Shepherd G. 1987. An alternative perspective on recruitment overfishing and biological reference points. Can. J. Fish. Aquat. Sci. 44: 913-918. https://doi.org/10.1139/f87-110
Skjæraasen J.E., Nash R.D.M., Korsbrekke K., et al. 2012. Frequent skipped spawning in the world's largest cod population. Proc. Natl. Acad. Sci. U.S.A. 109: 8995-8999. https://doi.org/10.1073/pnas.1200223109 PMid:22615381 PMCid:PMC3384173
Walters C., Maguire J.J. 1996. Lessons for stock assessment from the northern cod collapse. Rev. Fish. Biol. Fish. 6: 125-137. https://doi.org/10.1007/BF00182340
Watanabe Y., Zenitani H., Kimura R. 1995. Population decline of the Japanese sardine Sardinops melanostictus owing to recruitment failures. Can. J. Fish. Aquat. Sci. 52: 1609-1616. https://doi.org/10.1139/f95-154
Winemiller O., Rose K.A. 1992. Patterns of life-history diversification in North American fishes: irnplications for population regulation. Can. J. Fish. Aquat. Sci. 49: 2196-2218. https://doi.org/10.1139/f92-242
Wood S.N. 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, London, 476 pp. https://doi.org/10.1201/9781420010404
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.