Energía para una sociedad post-carbono sostenible

Autores/as

  • Antonio García-Olivares Instituto de Ciencias del Mar, CSIC

DOI:

https://doi.org/10.3989/scimar.04295.12A

Palabras clave:

Mix 100% renovable, potencial renovable, TRE, límites materiales, economía post-carbono

Resumen


Una forma posible de evitar el riesgo de declive energético y luchar contra el cambio climático sería construir un sistema energético global 100% renovable. Un sistema de energía renovable (ER) se podría escalar hasta el rango de 12 terawatios de electricidad (TWe) si el 10% de las plataformas continentales fueran explotadas con molinos flotantes hasta profundidades de unos 225 m, 5% de los continentes con turbinas terrestres, y el 5% de los principales desiertos fueran utilizados para estaciones de concentración solar (CSP). Sin embargo, una economía electrificada a nivel mundial no puede crecer muy por encima de 12 TWE sin acercarse al límite de las reservas globales de cobre. Los paneles fotovoltaicos (PV) de silicio más recientes no utilizan metalizaciones de plata y podrían contribuir con hasta 1 TW de energía residencial descentralizada. La hidroelectricidad tiene un potencial de 1 TW aunque una fracción de ello tendría que ser sacrificado con fines de almacenamiento de energía. Hidroelectricidad, CSP, energía de las olas y redes integradas de escala continental pueden ser suficientes para ajustar la oferta a la demanda, evitando la intermitencia. El nuevo mix eléctrico tendría una Tasa de Retorno Energético (TRE) de alrededor de 18, un 25% menos que la TRE actual estimada. Eso debería ser suficiente para sostener una economía industrializada, siempre que la sustitución de los combustibles fósiles por electricidad se haga de forma inteligente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adams A.S., Keith D.W. 2013. Are global wind power resource estimates overstated? Environ. Res. Lett. 8: 015021. http://dx.doi.org/10.1088/1748-9326/8/1/015021

Alam J., Iqbal M.T. 2010. A Low Cut-In Speed Marine Current Turbine. J. Ocean Technol. 5: 49-61.

Amante C., Eakins B.W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources And Analysis. National Oceanic And Atmospheric Administration. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center Marine Geology and Geophysics Division. Boulder, Colorado. http://www.gebco.net/data_and_products/gridded_bathymetry_data/ PMCid:PMC2658824

Barzantny K., Achner S., Vomberg S. 2009. Klimachutz: Plan B 2050: Energiekonzept für Deutschland. Greenpeace, Hamburg.

Behrens S., Hayward J.A., Woodman S.C., et al. 2015. Wave energy for Australia's National Electricity Market. Renewable Energy 81: 685-693. http://dx.doi.org/10.1016/j.renene.2015.03.076

Bossel U. 2005. On the Way to a Sustainable Energy Future, Proceed.27th Intern. Telecom. Conf., Sept. 2005, 659-668. Berlin.

Calaf M., Meneveau C., Meyers J. 2010. Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22: 015110. http://dx.doi.org/10.1063/1.3291077

Calero Quesada M.C., García-Lafuente J., Sánchez Garrido J.C., et al. 2014. Energy of marine currents in the Strait of Gibraltar and its potential as a renewable energy resource. Renew. Sustain. Energy Rev. 34: 98-109 http://dx.doi.org/10.1016/j.rser.2014.02.038

Carbajales-Dale M., Raugei M., Fthenakis V., et al. 2015. Energy return on investment (EROI) of solar PV: An attempt at reconciliation [Point of View]. Proceed. IEEE 103(7): 995-999. http://dx.doi.org/10.1109/JPROC.2015.2438471

Chapman I. 2013. The end of peak oil? Why this topic is still relevant despite recent denials. Energy Policy 64: 93-101. http://dx.doi.org/10.1016/j.enpol.2013.05.010

Creutzig F., Goldschmidt J.C., Lehmann P., et al. 2014. Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition. Renew. Sustain. Energy Rev. 38: 1015-1028. http://dx.doi.org/10.1016/j.rser.2014.07.028

Czisch G. 2008. Totally Renewable Electricity Supply: a European/ Trans-European Example. Medenergie 27: 1-19.

Czisch G., Giebel G. 2007. Realisable Scenarios for a Future Electricity Supply Based on 100% Renewable Energies. Proceed. Risø Intern. Energy Conf. Energy Sol. Sustain. Develop.: 186- 195. Risø National Laboratory. Kopenhagen, Denmark, May 2007.

De Castro C., Mediavilla M., Miguel L.J., et al. 2011. Global wind power potential: Physical and technological limits. Energy Policy 39: 6677-6682. http://dx.doi.org/10.1016/j.enpol.2011.06.027

De Castro C., Mediavilla M., Miguel L. J., et al. 2013. Global solar electric potential: A review of their technical and sustainable limits. Renew. Sustain. Energy Rev. 28: 824-835. http://dx.doi.org/10.1016/j.rser.2013.08.040

Delucchi M.A., Jacobson M.Z. 2011. Providing all global energy with wind, water, and solar power, part II: reliability, system and transmission costs, and policies. Energy Policy 39 (3): 1170-1190. http://dx.doi.org/10.1016/j.enpol.2010.11.045

Eurelectric 2013. Hydropower for a sustainable Europe. Eurelectric Fact Sheets. Brussels.

Fouquet R. 2010. The slow search for solutions: Lessons from historical energy transitions by Sector and service. Energy Policy 38: 6586-6596. http://dx.doi.org/10.1016/j.enpol.2010.06.029

Frame B., Brown J. 2008. Developing post-normal technologies for sustainability. Ecological Economics 65: 225-241. http://dx.doi.org/10.1016/j.ecolecon.2007.11.010

Funtowicz S., Ravetz J.R. 1993. Science for the Post-Normal Age. Futures 25: 735-755. http://dx.doi.org/10.1016/0016-3287(93)90022-L

Gagnon L. 2008. Civilisation and energy payback. Energy Policy 36: 3317-3322. http://dx.doi.org/10.1016/j.enpol.2008.05.012

Gagnon N., Hall C.A.S., Brinker L. 2009. A preliminary investigation of energy return on energy investment for global oil and gas production. Energies 2: 490-503. http://dx.doi.org/10.3390/en20300490

García-Olivares A. 2015a. Substituting silver in solar photovoltaics is feasible and allows for decentralization in smart regional grids. Environ. Innov. Societ. Transitions 17: 15-21. http://dx.doi.org/10.1016/j.eist.2015.05.004

García-Olivares A. 2015b. Substitutability of electricity and renewable materials for fossil fuels in a post-carbon economy. Energies 8(12): 13308-13343. http://dx.doi.org/10.3390/en81212371

García-Olivares A., Ballabrera-Poy J. 2014. Energy and mineral peaks, and a future steady state economy. Technol. Forecast. Soc. Change 90: 587-598. http://dx.doi.org/10.1016/j.techfore.2014.02.013

García-Olivares A., Turiel A. 2013. The Second Half of the Fossil Fuel Age: Environmental Externalities, Net Energy And Energy Security Concerns. In: Kumar R. (ed.), Fossil Fuels, Sources, Environmental Concerns and Waste Management Practices. Ed. Nova, New York, pp. 271-290.

García-Olivares A., Ballabrera J., García-Ladona E., et al. 2012. A global renewable mix with proven technologies and common materials. Energy Policy 41: 561-574. http://dx.doi.org/10.1016/j.enpol.2011.11.018

Giampietro M., Aspinall R.J., Ramos-Martin J., et al. (eds). 2014. Resource Accounting for Sustainability Assessment: The Nexus Between Energy, Food, Water and Land Use. Routledge, New York.

Grandell L., Thorenz A. 2014. Silver supply risk analysis for the solar sector. Renewable Energy 69: 157-165. http://dx.doi.org/10.1016/j.renene.2014.03.032

Grandy W.T. Jr. 2008. Entropy and the Time Evolution of Macroscopic Systems. Oxford Univ. Press, Oxford. http://dx.doi.org/10.1093/acprof:oso/9780199546176.001.0001

Grubler A., Johansson T.B., Mundaca L., et al. 2012: Chapter 1 - Energy Primer. In: Global Energy Assessment - Toward a Sustainable Future, pp. 99-150. Cambridge Univ. Press, Cambridge http://dx.doi.org/10.1017/CBO9780511793677.007

Hagerman G. 2007. Energy from Tidal, River, and Ocean Currents and from Ocean Waves. EESI Briefing on "The Role of Advanced Hydropower and Ocean Energy in Upcoming Energy Legislation", Washington DC.

Hall C.A.S., Dale B.E., Pimentel D. 2011. Seeking to Understand the Reasons for Different Energy Return on Investment (EROI) Estimates for Biofuels. Sustainability 3: 2413-2432. http://dx.doi.org/10.3390/su3122413

Hall C.S., Lambert J.G., Balogh S.B. 2014. EROI of different fuels and the implications for society. Energy Policy 64: 141–152. http://dx.doi.org/10.1016/j.enpol.2013.05.049

Heinberg R. 2009. Searching for a Miracle. Post Carbon Institute, False Solution Series #4.

Heinberg R. 2014. The end of growth. New Society Publishers, Vancouver. PMCid:PMC4069624

IEA. 2008. Energy Technology Perspectives in Support of the G8 Plan of Action. Scenarios and Strategies to 2050. OECD / IEA, Head of Communication and Information Office, Paris, France.

IPCC. 2011. Special Report on Renewable Energy Sources and Climate Change Mitigation. http://www.ipcc-wg3.de/

Jacobson M.Z., Delucchi M.A. 2011. Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39(3): 1154-1169. http://dx.doi.org/10.1016/j.enpol.2010.11.040

Kawajiri K., Oozeki T., Genchi Y. 2011. Effect of Temperature on PV Potential in the World. Environ. Sci. Technol. 45: 9030-9035. http://dx.doi.org/10.1021/es200635x PMid:21851102

Kempton W., Tomic J. 2005. Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 144: 280-294 http://dx.doi.org/10.1016/j.jpowsour.2004.12.022

Koseoglu N.M., van den Bergh J.C.J.M., Lacerda J.S. 2013. Allocating subsidies to R&D or to market applications of renewable energy? Balance and geographical relevance. Energy Sustain. Dev. 17: 536-545. http://dx.doi.org/10.1016/j.esd.2013.08.002

La Gennusa M., Lascari G., Rizzo G., et al. 2011. A model for predicting the potential diffusion of solar energy systems in complex urban environments. Energy Policy 39: 5335-5343. htttp: / /www.sciencedi rect . com/science/ar t icle/pi i / S0301421511004174

Leggett L.M., Ball D.A. 2012. The implication for climate change and peak fossil fuel of the continuation of the current trend in wind and solar energy production. Energy Policy 41: 610-617. http://dx.doi.org/10.1016/j.enpol.2011.11.022

Lehmann H., Nowakowski M. 2014. Archetypes of a 100% renewable energies power supply. Energy Procedia 57: 1077-1085. http://dx.doi.org/10.1016/j.egypro.2014.10.093

Matondi P.B., Havnevik K., Beyene A. 2011. Biofuels, land grabbing and food security in Africa. Zed Books, London, 248 pp.

Mearns E. 2011. Peak Oil—Now or Later? A Response to Daniel Yergin, The Oil Drum http://www.theoildrum.com/node/8391

Miller L.M., Gaus F., Kleidon A. 2011. Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst. Dynam., 2: 1-12. http://dx.doi.org/10.5194/esd-2-1-2011

MIT 2015. Richard Schmalensee et al. The Future of Solar Energy: An Interdisciplinary MIT Study. Massachusetts Institute of Technology.

Murray J., King D. 2012. Oil's tipping point has passed, Nature 481: 433-435. http://dx.doi.org/10.1038/481433a PMid:22281577

Nihous G.C. 2007. A preliminary assessment of ocean thermal energy conversion resources. Transactions of the ASME 129, 10-17 March 2007. http://dx.doi.org/10.1115/1.2424965

Niven R.K. 2009. Jaynes' MaxEnt, Steady State Flow Systems and the Maximum Entropy Production Principle. AIP Conf. Proc. 1193, 397. Conference date: 5-10 July 2009

Pascale S., Gregory J.M., Ambaum M.H.P., et al. 2012. A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. 38: 1211-1227. http://dx.doi.org/10.1007/s00382-011-0996-2

Peter S. 2015. Modellierung einer vollständig auf erneuerbaren Energien basierenden Stromerzeugung im Jahr 2050 in autarken, dezentralen Strukturen. Dessau-Roßlau: Umweltbundesamt (in German).

Pleßmann G., Erdmann M., Hlusiak M., et al. 2014. Global energy storage demand for a 100% renewable electricity supply. Energy Procedia 46: 22-31. http://dx.doi.org/10.1016/j.egypro.2014.01.154

Prieto P., Hall C.A.S. 2013. Spain's Photovoltaic Revolution. The Energy Return on Investment, Springer, Berlin. http://dx.doi.org/10.1007/978-1-4419-9437-0

Raugei M., Fullana-i-Palmer P., Fthenakis V. 2012. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles. Energy Policy 45: 576–582. http://dx.doi.org/10.1016/j.enpol.2012.03.008

Roadmap. 2010. Roadmap 2050 - Practical guide to a prosperous, low-carbon Europe. European Climate Foundation. http://www.roadmap2050.eu/

Scheer H. 2012. The energy imperative. 100 per cent renewable now. Earthscan, London.

Schneider A., Friedl M.A., Potere D. 2009. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4: 1-11. http://dx.doi.org/10.1088/1748-9326/4/4/044003

Singer S. (ed.) 2011. The Energy Report: 100% Renewable Energy by 2050. World Wide Foundation. https://www.wwf.or.jp/activities/lib/pdf_climate/green-energy/ WWF_EnergyVisionReport.pdf

Trieb F. 2006. Trans-Mediterranean Interconnection for Concentrating Solar Power. TRANS-CSP Study Report, DESERTEC Project. http:// www.dlr.de/tt/trans-cspS

Ummel K. 2010. Concentrating Solar Power in China and India: A Spatial Analysis of Technical Potential and the Cost of Deployment. Working Paper 210, July 2010. Center for Global Development. Washington DC.

USGS. 2015. US Geological Survey. Commodity Statistics and Information. http://minerals.usgs.gov/minerals/pubs/commodity/

Vant-Hull L. 1985. Solar thermal power-generation—the solar tower, progress toward commercialization. Nat. Resour. J. 25: 1099-1117.

Ziegler H. 1983. An Introduction to Thermomechanics. North- Holland publishing company, Amsterdam, The Netherlands, 370 pp.

Publicado

2016-09-30

Cómo citar

1.
García-Olivares A. Energía para una sociedad post-carbono sostenible. Sci. mar. [Internet]. 30 de septiembre de 2016 [citado 22 de julio de 2024];80(S1):257-68. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1674

Número

Sección

Artículos