Fitting the last Pleistocene δ18O and CO2 time series with simple box models


  • Antonio García-Olivares Departament d’Oceanografia Física, Institut de Ciències del Mar, CSIC
  • Carmen Herrero Departament d’Oceanografia Física, Institut de Ciències del Mar, CSIC



climatic changes, palaeoclimate, glacial oscillations, box models, oceanic CO2


Based on the model of Paillard and Parrenin (2004), several box models that incorporate simple parameterizations of the oceanic CO2 pump were developed. The models’ parameters are calibrated to the δ18O and CO2 observational time series available for the last 800 kyr BP. The Paillard model performance may be improved if its CO2 sensitivity to insolation is eliminated and different response times are assumed both for absorption/emission of CO2 and for ablation/accumulation of ice. With these changes the correlations between simulated and experimental time series increase from 0.59 and 0.63 (for CO2 and ice volume V) to 0.77 and 0.88 respectively. Oceanic CO2 pulses of 10 to 20 kyr are found to take place at the beginning of the last nine deglaciations according to this model. The timing of the last nine terminations may also be qualitatively reproduced with a primary production model in which export depends on V. The dependence between CO2 export and V that generates the best fit is not exponential, as expected from some evidences, but a square function. The good model-data fitting suggests that the rate of formation of deep water may be an important factor controlling the oceanic pulse that triggers the deglaciations.


Download data is not yet available.


Adkins J.F., McIntyre K., Schrag D.P. 2002. The salinity, temperature and d18O of glacial deep ocean. Science 298: 1769-1773. PMid:12459585

Archer D., Maier-Reimer E. 1994. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367: 260-263.

Archer D., Eby M., Brovkin V., Ridgwell A., Cao L., Mikolajewicz U., Caldeira K., Matsumoto K., Munhoven G., Montenegro A., Tokos K. 2009. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annu. Rev. Earth Pl. Sc. 37: 117-133.

Bard E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography 3: 635-645.

Berger A. 1978. A simple algorithm to compute long term variations of daily or monthly insolation. Contr. 18. Inst of Astronomy and Geophysics . Université Catholique de Louvain. Louvain-la-Neuve. Belgium.

Berger A., Loutre M.F. 1991. Insolation values for the climate of the last 10 million years. Quaternary Sci. Rev. 10: 297-317.

Bjöorkström A. 1979. A Model of CO2 Interactions between Atmosphere, Oceans, and Land Biota. In: Bolin, B., Degen E.T., Kempe S., Ketner P. (eds.), The Global Carbon Cycle. Scientific Committee on Problems of the Environment (SCOPE), Chap. 15. Available at:

Brovkin V., Bendtsen J., Claussen M., Ganopolski A., Kubatzki C., Petoukhov V., Andreev A. 2002. Carbon cycle, Vegetation and Climate Dynamics in the Holocene: Experiments with the CLIMBER-2 Model. Global Biogeochem. Cy. 16(4): 1139.

Brovkin V., Ganopolski A., Archer D., Rahmstorf S. 2007. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22: PA4202.

Bouttes N., Paillard D., Roche D.M. 2010. Impact of brine-induced stratification on the glacial carbon cycle. Clim. Past Discuss. 6: 681-710.

Bouttes N., Paillard D., Roche D. M., Brovkin V., Bopp L. 2011. Last Glacial Maximum CO2 and d13C successfully reconciled. Geophys. Res. Lett. 38: L02705.

Broecker W.S. 1982. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11: 151-197.

Curry W.B., Oppo D.W. 2005. Glacial water mass geometry and the distribution of d13C of SCO2 in the western Atlantic Ocean. Paleoceanography 20: PA1017.

Fischer H., Schmitt J., Lu.thi D., Stocker T.F., Tschumi T., Parekh P., Joos F., Köhler P., Völker C., Gersonde R., Barbante C., Le Floch M., Raynaud D., Wolff E. 2010. The role of Southern Ocean processes in orbital and millennial CO2 variations – A synthesis. Quaernary. Sci. Rev. 29: 193-205.

Gildor H., Tziperman E. 2001. Physical mechanisms behind biogeochemical glacial-interglacial CO2 variations. Geophys. Res. Lett. 28: 2421-2424.

Huybers P. 2010. Combined obliquity and precession pacing of the late Pleistocene glacial cycles. Geophys. Res. Abstracts 12: EGU2010-15001, EGU General Assembly 2010. Available at:

Keeling R.F., Stephens B.B. 2001. Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography 16: 112-131.

Knox F., McElroy M. 1984. Changes in atmospheric CO2: Influence of marine biota at high latitude. J. Geophys. Res. 89: 4629-4637.

Lisiecki L. E., Raymo M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20: PA1003.

Lüthi D., Le Floch M., Bereiter B., Blunier T., Barnola J.-M., Siegenthaler U., Raynaud D., Jouzel J., Fischer H., Kawamura K., Stocker T.F. 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453: 379-382. PMid:18480821

Martínez-Garcia A., Rosell-Melé A., Geibert W., Gersonde R., Masqué P., Gaspari V., Barbante C. 2009. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24: PA1207.

Monnin E., Indermu.hle A., Dällenbach A., Flu.ckiger J., Stauffer B., Stocker T.F., Raynaud D., Barnola J.-M. 2001. Atmospheric CO2 concentrations over the last glacial termination. Science 291: 112-114. PMid:11141559

Montenegro A., Brovkin V., Eby M., Archer D., Weaver A.J. 2007. Long term fate of anthropogenic carbon. Geophys. Res. Lett. 34: L19707.

Paillard D., Parrenin, F. 2004. The Antarctic ice sheet and the triggering of deglaciations. Earth Planet. Sci. Lett. 227: 263-271.

Parrenin F., Paillard, D. 2003. Amplitude and phase of glacial cycles from a conceptual model. Earth Planet. Sci. Lett. 214: 243-250.

Pelegrí J.L. 2008. A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2. Sci. Mar. 72: 125-202.

Pepin L., Raynaud D., Barnola J. M., Loutre M.F. 2001. Hemispheric roles of climate forcings during glacial–interglacial transitions as deduced from the Vostok record and LLN-2D model experiments. J. Geophys. Res. 106: 31885-31892.

Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429-436.

Schmittner A. 2007. Impact of the Ocean's Overturning Circulation on Atmospheric CO2. In: Ocean Circulation: Mechanisms and Impacts, Geophysical Monograph Series 173. American Geophysical Union 10.1029/173GM20

Siddall M., Hönisch B., Waelbroeck C., Huybers P. 2009. Changes in deep Pacific temperature during the mid-Pleistocene transition and Quaternary. Quat. Sci. Rev.

Siegenthaler U., Wenk T. 1984. Rapid atmospheric CO2 variations and ocean circulation, Nature 308: 624-625.

Siegenthaler U. et al. 2005. EPICA Dome C carbon dioxide concentrations from 650 to 413 kyr BP. Physikalisches Institut, Universität Bern. In Supplement to: Siegenthaler U., Stocker T. F., Monnin E., Lu.thi D., Schwander J., Stauffer B., Raynaud D., Barnola J.-M., Fischer H., Masson-Delmotte V., Jouzel J. 2005. Stable carbon cycle - Climate relationship during the Late Pleistocene. Science, 310(5752): 1313-1317. PMid:16311332

Sigman D.M., Boyle E.A. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407: 859-869. PMid:11057657

Skinner L.C. 2009. Glacial-interglacial atmospheric CO2 change: a possible "standing volume" effect on deep-ocean carbon sequestration. Climate Past 5: 537-550.

Sloyan B., Rintoul S.R. 2001. The southern limb of the global overturning circulation, J. Phys. Oceanogr. 31: 143-173.<0143:TSOLOT>2.0.CO;2

Toggweiler J.R., Sarmiento J.L. 1985. Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water at high latitudes. In: Sundquist E., Broecker W.S. (eds.), The carbon cycle and atmospheric CO2: Natural variations Archean to present. Geophysical monograph 32, American Geophysical Union, Washington D.C. pp.163-184.

Toggweiler J.R. 1999. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14: 571-588.

Toggweiler J.R., Russell J.L., Carson S.R. 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21: PA2005.

Waelbroeck C., Labeyrie L., Michel E., Duplessy J.C., McManus J.F., Lambeck K., Balbon E., Labracherie M. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Sci. Rev. 21: 295-305.

Watson A.J., Naveira Garabato A.C. 2006. The role of southern ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change, Tellus 58B: 73-87.

Wunsch C. 2003. Determining paleoceanographic circulations, with emphasis on the last glacial maximum. Quaternary Sci. Rev. 22: 371-385.




How to Cite

García-Olivares A, Herrero C. Fitting the last Pleistocene δ18O and CO2 time series with simple box models. Sci. mar. [Internet]. 2012Sep.30 [cited 2024Apr.20];76(S1):209-18. Available from: