Divergencia genética de tanaidáceos (Crustacea: Peracarida) con baja capacidad de dispersión
DOI:
https://doi.org/10.3989/scimar.03878.19APalabras clave:
diferencias genéticas, diferencias morfológicas, 28S, COI, crustáceos, tanaidáceos, ZeuxoResumen
En este estudio, investigamos los patrones filogeográficos de fragmentos de ADN nuclear, ribosómico y mitocondrial de 5 especies de tanaidáceos (Zeuxo, Tanaidae) del Atlántico, Pacífico y Mediterráneo. Nos propusimos interpretar los resultados en el marco de hipótesis sobre la distribución de pequeños invertebrados con limitada capacidad de dispersión. Encontramos evidencia de una sorprendentemente alta diferenciación genética para tanaidáceos del medio intermareal del Atlántico Norte. Esto es resultado de una limitada capacidad de dispersión, ya que los tanaidáceos poseen desarrollo directo, carecen de estadíos pelágicos, y una limitada capacidad natatoria. Sin embargo, encontramos una baja diferenciación genética para una especie de tanaidáceo del Atlántico Norte y dos del Pacífico Norte, lo que sugiere un escenario de reciente colonización tras la última glaciación. La especie Zeuxo normani constituye un complejo de especies que, al menos, agrupa a Z. normani (Califonia), Z. cf. normani (Japón), Z. cf. normani (Australia), Z. sp. A (Corea) y Z. holdichi (España y Francia). Nuestros resultados mostraron que la forma tradicional de identificar tanaidáceos subestima su diversidad y que lo que previamente se consideraron como caracteres morfológicos claramente diferenciadores son, sin embargo, variables y poco fiables.
Descargas
Citas
Addison J.A., Hart. M.W. 2005. Colonization, dispersal and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59(3): 532-543. PMid:15856696
Audzijonytė A., Damgaard J., Varvio S.-L., Vainio J.K., Väinölä R. 2005. Phylogeny of Mysis (Crustacea, Mysida): history of continental invasions inferred from molecular and morphological data. Cladistics 21(6): 575-596. http://dx.doi.org/10.1111/j.1096-0031.2005.00081.x
Bamber R.N. 1990. A new species of Zeuxo (Crustacea: Tanaidacea) from the French Atlantic Coast. J. Nat. His. 24: 1587-1596. http://dx.doi.org/10.1080/00222939000770911
Bamber R.N. 2010. In the footsteps of Henrik Nikolaj Krøyer: the rediscovery and redescription of Leptochelia savignyi (Krøyer, 1842) sensu stricto (Crustacea: Tanaidacea: Leptocheliidae). Proc. Biol. Soc. Wash. 123: 289-311. http://dx.doi.org/10.2988/10-14.1
Bamber R.N. 2012a. Littoral Tanaidacea (Crustacea: Peracarida) from Macaronesia: allopatry and provenance in recent habitats. J. Mar. Biol. Ass. UK 92(5): 1095-1116. http://dx.doi.org/10.1017/S0025315412000252
Bamber R.N. 2012b. A re-assessment of Hexapleomera Dudich, 1931 Crustacea: Tanaidacea: Tanaidae), with designation of three new species. Zootaxa 3583: 51-70.
Bamber R.N., Błazewicz-Paszkowycz M. 2013. Another inordinate fondness: diversity of the tanaidacean fauna of Australia, with description of three new taxa. J. Nat. His. 47: 1767-1789. http://dx.doi.org/10.1080/00222933.2012.742164
Bird G.J. 2008. Untying the Gordian Knot: on Tanais novaezealandiae Thomson (Crustacea, Tanaidacea, Tanaidae) from New Zealand, with descriptions of two new Zeuxoides species. Zootaxa 1877: 1-36.
Bird G.J., Larsen K. 2009. Tanaidacean Phylogeny: The second step. The basal Paratanaoidean families. Arthr. Syst. Phyl. 67: 137-158.
Blazewicz-Paszkowycz M., Bamber R., Anderson G. 2012. Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans – How far have we come? PloS One 7(4): 1-11. http://dx.doi.org/10.1371/journal.pone.0033068 PMid:22496741 PMCid:PMC3319556
Cacabelos E., Lourido A., Troncoso J.S. 2010. Composition and distribution of subtidal and intertidal crustacean assemblages in soft-bottoms of the Ria de Vigo (NW Spain). Sci. Mar. 74(3): 455-464. http://dx.doi.org/10.3989/scimar.2010.74n3455
Colgan D.J., MacLauchlan A., Wilson G.D.F., Livingston S.P., Edgecombe G.D., Macaranas J., Cassis G., Gray M.R. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust. J. Zool. 46: 419-437. http://dx.doi.org/10.1071/ZO98048
Coyer J.A., Diekmann O.E., Serrão E.A., Procaccini G., Milchakova N., Pearson G.A., Stam W.T., Olsen J.L. 2004. Population genetics of dwarf eelgrass Zostera noltii throughout its biogeographic range. Mar. Ecol. Prog. Ser. 281: 51-62. http://dx.doi.org/10.3354/meps281051
Delille D., Guidi L.D., Soyer J. 1985. Nutrition of Allotanais hirsutus (Crustacea, Tanaidacea) at Kerguelen Islands. In: Siegfried W.R., Condy P.R., Laws R.M. (eds) Antarctic nutrient cycles and food webs. Berlin, Springer-Verlag, pp. 378-380. http://dx.doi.org/10.1007/978-3-642-82275-9_53
Drumm D.T. 2010. Phylogenetic relationships of Tanaidacea (Eumalacostraca: Peracarida) inferred from three molecular loci. J. Crust. Biol. 30: 692-698. http://dx.doi.org/10.1651/10-3299.1
Edgar G.J. 2008. Shallow water Tanaidae (Crustacea: Tanaidacea) of Australia. Zootaxa 1836: 1-92.
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotec. 3: 294-299. PMid:7881515
Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. http://dx.doi.org/10.1080/10635150390235520 PMid:14530136
Greve L. 1974. Anatanais normani (Richardson) found near Bermuda and notes on other Anatanais species. Sarsia 55: 115-120.
Hall T.A. 1999. Bioedit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Aci. Symp. 41: 95-98.
Hardy S.M., Carr, C.M., Hardman, M., Steinke, D., Corstorphine, E. Mah, C. 2011. Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar. Biodiv. 41: 195-210. http://dx.doi.org/10.1007/s12526-010-0056-x
Harrison M.K., Crespi B.J. 1999. Phylogenetics of Cancer Crabs (Crustacea: Decapoda: Brachyura). Mol. Phylo. Evol. 12(2): 186-199. http://dx.doi.org/10.1006/mpev.1998.0608 PMid:10381321
Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-276. http://dx.doi.org/10.1111/j.1095-8312.1996.tb01434.x
Hewitt G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 183-195. http://dx.doi.org/10.1098/rstb.2003.1388 PMid:15101575 PMCid:PMC1693318
Katoh K., Kuma K., Toh H., Miyata T. 2005. MAFFT version 806 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33(2): 511-518. http://dx.doi.org/10.1093/nar/gki198 PMid:15661851 PMCid:PMC548345
Kettle A.J., Morales-Mu-iz A., Roselló-Izquierdo E., Heinrich D., Vøllestad L.A. 2010. Refugia of marine fish in the Northeast Atlantic during the Last Glacial Maximum: concordant assessment from archaeozoology and palaeotemperature reconstructions. Clim. Past Dis. 6: 1351-1389. http://dx.doi.org/10.5194/cpd-6-1351-2010
Knowlton N. 1993. Sibling species in the sea. Ann. Rev. Eco. Syst. 24: 189-216. http://dx.doi.org/10.1146/annurev.es.24.110193.001201
Kudinova-Pasternak R.K. 1989. A supplement to the fauna of Tanaidacea (Crustacea) of Kurile Islands and the description of Zeuxo beringi sp. n. (Commander Islands). Zool. Zhur. 68: 128-130.
Larsen K. 2001. Morphological and molecular investigation of polymorphism and cryptic species in tanaid crustaceans: implications for tanaid systematics and biodiversity estimates. Zool. J. Linn. Soc. 131: 353-379. http://dx.doi.org/10.1111/j.1096-3642.2001.tb02241.x
Larsen K. 2005. Deep-sea Tanaidacea (Peracarida) from the Gulf of Mexico. Crust. Mono. 5, Brill, Leiden, 381 pp.
Larsen K., Froufe E. 2010. Identification of polymorphic species within groups of morphologically conservative taxa: combining morphological and molecular techniques. In: Nimis P.L., Vignes-Lebbe R. (eds) Tools for Identifying Biodiversity: progress and problems. Trieste, University of Trieste, pp. 301-305.
Larsen K., Froufe E. 2013. A new polymorphic species of Leptochelia (Crustacea: Tanaidacea) from Guinea Bissau, West Africa, with comments of genetic variation within Leptochelia. Afric. Invert. 54 (1): 105-125. http://dx.doi.org/10.5733/afin.054.0105
Larsen K., Wilson G.D.F. 1998. Tanaidomorphan systematics—is it obsolete? J. Crust. Biol. 18: 346-362. http://dx.doi.org/10.2307/1549329
Larsen K., Wilson G.D.F. 2002. Tanaidacean phylogeny. The first step: the superfamily Paratanaidoidea. J. Zool. Sys. Evol. Res. 40: 205-222. http://dx.doi.org/10.1046/j.1439-0469.2002.00193.x
Larsen K., Nagaoka R., Froufe E. 2012. Tanaidacea (Crustacea) from Macaronesia III. The shallow-water Tanaidomorpha from the Cape Verde archipelago. Zootaxa 3498: 24-44.
Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. http://dx.doi.org/10.1093/bioinformatics/btp187 PMid:19346325
Luttikhuizen P.C., Campos J., van Bleijswijk J., Peijnenburg K.T.C.A., van der Veer H.W. 2008. Phylogeography of the common shrimp, Crangon crangon (L.) across its distribution range. Mol. Phyl. Evol. 46: 1015-1030. http://dx.doi.org/10.1016/j.ympev.2007.11.011 PMid:18207428
Maggs C.A., Castilho R., Foltz D., Henzler C., Jolly M.T., Kelly J., Olson J., Perez K.E., Stam W., Vainola R., Viard F., Wares, J. 2008. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89: 108-122. http://dx.doi.org/10.1890/08-0257.1
Meehan B.W., Carlton J.T., Wenne R. 1989. Genetic affinities of the bivalve Macoma balthica from the Pacific coast of North America: evidence of recent introduction and historical distribution. Mar. Biol. 102: 235-241. http://dx.doi.org/10.1007/BF00428285
Palumbi S.R., Kessing B.D. 1991. Population biology of the trans-Arctic exchange: MtDNA sequence similarity between Pacific and Atlantic sea urchins. Evol. 45: 1790-1805. http://dx.doi.org/10.2307/2409832
Palumbi S.R., Wilson A.C. 1990. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evol. 44: 403-415. http://dx.doi.org/10.2307/2409417
Pelc R.A., Warner R.R., Gaines S.D. 2009. Geographical patterns of genetic structure in marine species with contrasting life histories. J. Biogeogr. 36: 1881-1890. http://dx.doi.org/10.1111/j.1365-2699.2009.02138.x
Petit R.J., Aguinagalde I., de Beaulieu J.-L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Muller-Starck G., Demesure-Musch B., Palmé A., Martín J. P., Rendell S., Vendramin G.G. 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563-1565. http://dx.doi.org/10.1126/science.1083264 PMid:12791991
Pires A.M.S. 1980. Ecological studies on intertidal and infralittoral Brazilian Tanaidacea (Crustacea) (Peracarida). Stud. Neotrop. Fau. Envir. 15: 141-153. http://dx.doi.org/10.1080/01650528009360571
Posada D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256. http://dx.doi.org/10.1093/molbev/msn083 PMid:18397919
Rawson P.D., Hilbish T.J. 1995. Evolutionary relationships among the male and female lineages in the Mytilus edulis species complex. Mar. Biol. 12: 893-901.
Richardson H. 1905. A monograph of the isopods of North America. Bull. US. Nat. Mus. 54: 1-727.
Riera R., Tuya F., Sacramento A., Ramos E., Rodríguez M., Monterroso O. 2011. The effects of brine disposal on a subtidal meiofauna community. Est. Coast. Shelf. Sci. 93: 359-365 http://dx.doi.org/10.1016/j.ecss.2011.05.001
Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19: 1572-1574. http://dx.doi.org/10.1093/bioinformatics/btg180 PMid:12912839
Shiino S.M. 1951. On two new species of the family Apseudidae found at Seto. Rep. Facul. Fish., Prefec. Uni. Mie. 1: 11-25.
Sieg J. 1980 Taxonomische monographie der Tanaidae Dana, 1849 (Crustacea, Tanaidacea). Abhandl. Sencken. Naturforsc. Gesel. 537: 1-267.
Sokolova M.N. 1959. On the distribution of deep-water bottom animals in relation to their feeding habits and the character of sedimentation. Deep Sea Res. 6: 1-4. http://dx.doi.org/10.1016/0146-6313(59)90052-8
Stebbing T.R.R. 1905. Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar. Ceylon Pearl Oyster Fisheries supplementary reports 23: 1-164.
Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738
Taylor E.B., Dodson J.J. 1994. A molecular analysis of relationships and biogeography within a species complex of Holoarctic fish (genus Osmerus). Mol. Eco. 3: 235-248. http://dx.doi.org/10.1111/j.1365-294X.1994.tb00057.x PMid:8061880
Teeter J.W. 1973. Geographic distribution and dispersal of some recent shallow-water Ostracoda. Ohio J. Sci. 73: 46-54.
Thiel M., Haye P.A. 2006. The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanog. Mar. Biol. 44: 323-429.
Tuya F., Larsen K., Platt V. 2010. Patterns of abundance and assemblage structure of epifauna inhabiting two morphologically different kelp holdfasts. Hydrobiologia 658: 373-382. http://dx.doi.org/10.1007/s10750-010-0527-x
van Oppen M.J.H., Draisma S.G.A., Olsen J.L., Stam W.T. 1995. Multiple trans-Arctic passages in the red-alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar. Biol. 123: 179-188. http://dx.doi.org/10.1007/BF00350338
Väinölä R. 2003. Repeated trans-Arctic invasions in littoral bivalves: molecular zoogeography of the Macoma balthica complex. Mar. Biol. 143: 935-946. http://dx.doi.org/10.1007/s00227-003-1137-1
Whiting M.F. 2002. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zool. Scrip. 31: 93-104. http://dx.doi.org/10.1046/j.0300-3256.2001.00095.x
Witman J.D., Roy K. 2009. Experimental marine macroecology: progress and prospects. In: Witman J.D. Roy R. (eds) Marine Macroecology. University of Chicago Press, Chicago, Illinois, pp. 341-356.
Xavier R., Santos A.M., Branco M. 2012. MtDNA and nuclear data reveal patterns of low genetic differentiation for the isopods Stenosoma lancifer and Stenosoma acuminatum, with low dispersal ability along the northeast Atlantic coast. Sci. Mar. 76(1): 133-140. http://dx.doi.org/10.3989/scimar.03373.29A
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.