Photo-physiological performance and short-term acclimation of two coexisting macrophytes (Cymodocea nodosa and Caulerpa prolifera) with depth
DOI:
https://doi.org/10.3989/scimar.04391.07AKeywords:
macroalgae, seagrass, photoacclimation, photo-biology, photoprotection, Atlantic OceanAbstract
Marine macrophytes are vertically distributed according to their ability to optimize their photosynthetic performance. We assessed the photo-physiological performance of the seagrass Cymodocea nodosa and the green seaweed Caulerpa prolifera at varying depth at Gran Canaria Island (Canary Islands, eastern Atlantic). The biomass of C. nodosa decreases with depth, while the opposite occurs for C. prolifera. Photochemical responses of both macrophytes were measured in shallow (5 m) and deep (20 m) waters at two times via chlorophyll a fluorescence and internal content of photoprotective pigments and antioxidant activity. We additionally carried out a reciprocal transplant experiment by relocating shallow and deep vegetative fragments of both macrophytes to assess their short-term photo-physiological acclimation. Overall, C. nodosa behaves as a ‘light-plant’, including a larger optimum quantum yield and ETRmax under scenarios of high photosynthetically active radiation and a larger antioxidant activity. In contrast, C. prolifera is a ‘shade-adapted’ plant, showing a larger carotene content, particularly in shallow water. Deep-water C. nodosa and C. prolifera are more photochemically efficient than in shallow water. The alga C. prolifera shows a rapid, short-term acclimation to altered light regimes in terms of photosynthetic efficiency. In conclusion, decreased light regimes favour the photosynthetic performance of the green alga when both species coexist.
Downloads
References
Barberá C., Tuya F., Boyra A., et al. 2005. Spatial variation in the structural parameters of Cymodocea nodosa seagrass meadows in the Canary Islands: a multiscaled approach. Bot. Mar. 48: 122-126. http://dx.doi.org/10.1515/BOT.2005.021
Bernardeau-Esteller J., Marín-Guirao L., Sandoval-Gil J.M., et al. 2011. Photosynthesis and daily metabolic carbon balance of the invasive Caulerpa racemosa var. cylindracea (Chlorophyta: Caulerpales) along a depth gradient. Sci. Mar. 75: 803-810. http://dx.doi.org/10.3989/scimar.2011.75n4803
Betancor S., Domínguez B., Tuya F., et al. 2015. Photosynthetic performance and photoprotection of Cystoseira humilis (Phaeophyceae) and Digenea simplex (Rhodophyceae) in an intertidal rock pool. Aquat. Bot. 121: 16-25. http://dx.doi.org/10.1016/j.aquabot.2014.10.008
Blois M. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. http://dx.doi.org/10.1038/1811199a0
Bradstreet R.B. 1965. The Kjeldahl method for organic Nitrogen. Academic Press, New York, 239 pp. PMCid:PMC2165436
Burkholder J.M., Tomasko D., Touchette B.W. 2007. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 350: 46-72. http://dx.doi.org/10.1016/j.jembe.2007.06.024
Cabello-Pasini A., Abdala-Díaz R., Macías-Carranza V., et al. 2015. Effect of irradiance and nitrate levels on the relationship between gross photosynthesis and electron transport rate in the seagrass Cymodocea nodosa. Cienc. Mar. 41: 93-105. http://dx.doi.org/10.7773/cm.v41i2.2499
Ceccherelli G., Cinelli F. 1997. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. J. Exp. Mar. Biol. Ecol. 217: 165-177. http://dx.doi.org/10.1016/S0022-0981(97)00050-6
Collado-Vides L. 2002. Morphological plasticity of Caulerpa prolifera (Caulerpales, Chlorophyta) in relation to growth form in a coral reef lagoon. Bot. Mar. 45: 123-129. http://dx.doi.org/10.1515/BOT.2002.013
Collier C.J., Waycott M., Giraldo Ospina A. 2012. Responses of four Indo-West Pacific seagrass species to shading. Mar. Poll. Bull. 65: 342-354. http://dx.doi.org/10.1016/j.marpolbul.2011.06.017 PMid:21741666
Duarte C.M., Dennison W.C., Orth R.J., et al. 2008. The charisma of coastal ecosystems. Estuar. Coasts 31: 233-238. http://dx.doi.org/10.1007/s12237-008-9038-7
García-Sánchez S., Korbee N., Pérez-Ruzafa I.M., et al. 2012. Physiological response and photoacclimation capacity of Cau lerpa prolifera (Forsskål) J.V. Lamouroux and Cymodocea nodosa (Ucria) Ascherson meadows in the Mar Menor lagoon (SE Spain). Mar. Environ. Res. 79: 37-47. http://dx.doi.org/10.1016/j.marenvres.2012.05.001 PMid:22658780
Gardner A., Tuya F., Lavery P.S., et al. 2013. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J. Exp. Mar. Biol. Ecol. 439: 143–151. http://dx.doi.org/10.1016/j.jembe.2012.11.009
Grzymski J., Johnsen G., Sakshaug E. 1997. The significance of intracellular self-shading on the bio-optical properties of brown, red and green macroalgae. J. Phycol. 33: 408-414. http://dx.doi.org/10.1111/j.0022-3646.1997.00408.x
Häder D.P., Porst M., Herrmann H., et al. 1997. Photosynthesis of Mediterranean green alga Caulerpa prolifera measured in the field under solar irradiation. J. Photoch. Photobio. B 37: 66-73. http://dx.doi.org/10.1016/S1011-1344(96)07338-1
Hanelt D. 1998. The capability for dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol. 131: 361-369. http://dx.doi.org/10.1007/s002270050329
Jassby A., Platt T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540-547. http://dx.doi.org/10.4319/lo.1976.21.4.0540
Lapointe B.E., Barile P.J., Littler M.M., et al. 2005. Macroalgal blooms on southeast Florida coral reefs: II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4: 1106-1122. http://dx.doi.org/10.1016/j.hal.2005.06.002
Lloret J., Marin A., Marin-Guirao L., et al. 2005. Changes in macrophytes distribution in a hypersaline coastal lagoon associated with the development of intensively irrigated agriculture. Ocean. Coast. Manage. 48: 828-842. http://dx.doi.org/10.1016/j.ocecoaman.2005.07.002
Lüning K. 1990. Seaweeds: their environment, biogeography, and ecophysiology. Wiley-Interscience, New York, NY. PMCid:PMC1971603
Malta E.J., Ferreira D.G., Vergara J.J., et al. 2005. Nitrogen load and irradiance affect morphology, photosynthesis and growth of Caulerpa prolifera (Bryopsidales, Chlorophyta). Mar. Ecol. Prog. Ser. 298: 101-114. http://dx.doi.org/10.3354/meps298101
Matsubara S., Krause G.H., Aranda J., et al. 2009. Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct. Plant Biol. 36: 20-36. http://dx.doi.org/10.1071/FP08214
Maxwell K., Johnson G. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51: 659-668. http://dx.doi.org/10.1093/jexbot/51.345.659 PMid:10938857
Murphy J., Riley J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta 27: 31-36. http://dx.doi.org/10.1016/S0003-2670(00)88444-5
Olesen B., Enríquez S., Duarte C.M., et al. 2002. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Prog. Ser. 236: 89-97. http://dx.doi.org/10.3354/meps236089
Parsons T.R., Strickland J.D.H. 1963. Discussion of spectrophometric determination of marine-plant pigments, with revised equations for ascertaining chlorophyll-a and carotenois. J. Mar. Res. 21: 105-156.
Platt T., Gallegos I. 1980. Modelling primary production. In: Falkowski P.G. (ed.), Primary productivity in the sea. Plenum, pp. 339-351. http://dx.doi.org/10.1007/978-1-4684-3890-1_19
Raniello R., Lorenti M., Brunet C., et al. 2006. Photoacclimation of the invasive alga Caulerpa racemosa var. cylindracea to depth and daylight patterns and a putative new role for siphonoxanthin. Mar. Ecol. 27: 20-30. http://dx.doi.org/10.1111/j.1439-0485.2006.00080.x
Silva J., Barrote J., Costa M.M., et al. 2013. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS ONE 8(11): e81058. http://dx.doi.org/10.1371/journal.pone.0081058 PMid:24312260 PMCid:PMC3842938
Terrados J., Ros J.D. 1992. Growth and primary production of Cymodocea nodosa (Ucria) Ascherson in a Mediterranean coastal lagoon: The Mar Menor (SE Spain). Aquat. Bot. 43: 63-74. http://dx.doi.org/10.1016/0304-3770(92)90014-A
Tuya F., Martín J.A., Luque A. 2006. Seasonal cycle of a Cymodocea nodosa seagrass meadow and of the associated ichthyofauna at Playa Dorada (Lanzarote, Canary Islands, eastern Atlantic). Cien. Mar. 32: 695-704.
Tuya F., Hernández-Zerpa H., Espino F., et al. 2013a. Drastic decadal decline of the seagrass Cymodocea nodosa at Gran Canaria (Eastern Atlantic): interactions with the green alga Caulerpa prolifera. Aquat. Bot. 105: 1-6. http://dx.doi.org/10.1016/j.aquabot.2012.10.006
Tuya F., Viera-Rodríguez M.A., Guedes R., et al. 2013b. Seagrass responses to nutrient enrichment depend on clonal integration, but not flow-on effects on associated biota. Mar. Ecol. Prog. Ser. 490: 23-35. http://dx.doi.org/10.3354/meps10448
Tuya F., Ribeiro-Leite L., Arto-Cuesta N., et al. 2014. Decadal changes in the structure of Cymodocea nodosa seagrass meadows: Natural vs. human influences. Estuar. Coast. Shelf Sci. 137: 41-49. http://dx.doi.org/10.1016/j.ecss.2013.11.026
Tuya F., Betancor S., Viera-Rodríguez M.A., et al. 2015. Effect of chronic versus pulse perturbations on a marine ecosystem: integration of functional responses across organization levels. Ecosystems 18: 1455-1471. http://dx.doi.org/10.1007/s10021-015-9911-8
Underwood A.J. 1997. Experiments in Ecology: their logical design and interpretation using Analysis of Variance. Cambridge Univ. Press., Cambridge, UK.
Walkley A., Black J.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic titration method. Soil Sci. 37: 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.