Role of food availability in the bathymetric distribution of the starfish Marthasterias glacialis (Lamk.) on reefs of northern Portugal


  • Fernando Tuya CIIMAR - BIOGES, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria - School of Natural Sciences, Centre for Ecosystem Management, Edith Cowan University
  • Pedro Duarte CIIMAR - CIAGEB, Faculty of Science and Technology, University Fernando Pessoa



starfish, vertical distribution, segregation, food availability, spatial patterns, Portugal


We examined whether the abundance and size of the starfish Marthasterias glacialis (Lamk.) exhibit a depthdependent partitioning on subtidal reefs. We tested the hypothesis that differences in food availability can result in habitat partitioning along a depth gradient. The abundance and size of M. glacialis was registered at 4 depth strata: 0-4 m, 4-8 m, 8-12 m, and > 12 m; we also recorded the number of food items that they were preying on. The abundance and size of M. glacialis decreased with depth. Mussels (Mytilus galloprivincialis) were the most preyed food item across all depth strata, followed by gastropods, sea urchins and barnacles; M. glacialis also consumed a significantly larger amount of mussels in feeding experiments compared with sea urchins and gastropods. The abundance of M. galloprivincialis beds decreased with depth. The clear link between the decrease in abundance and size of M. glacialis with depth and the decay of the most consumed prey (mussels) suggest that food availability may play an important role in the vertical distribution of this starfish, though wave-associated turbulence in the first few metres of the subtidal could also limit the abundance of M. glacialis.


Download data is not yet available.


Benitez-Villalobos F., Tyler P.A., Young C.M. 2006. Temperature and pressure tolerances of embryos and larvae of the Atlantic sea stars Asterias rubens and Marthasterias glacialis (Echinodermata: Asteroidea): Potential for deep-sea invasion from North Atlantic. Mar. Ecol. Prog. Ser. 314: 109-117.

Bonaviri C., Vega-Fernández T., Badalamenti F., Gianguzza P.,Di Lorenzo M., Riggio S. 2009. Relative role of fish vs. starfish predation in controlling sea urchin populations in Mediterranean rocky shores. Mar. Ecol. Prog. Ser. 382: 129-138.

Clemente S., Hernández J.C., Brito A. 2007. An external tagging technique for the long-spined sea urchin Diadema aff. antillarum. J. Mar. Biol. Ass. UK. 87: 777-779.

De’ath G., Moran P.J. 1998. Factors affecting the behaviour of crown of thorns starfish (Acanthaster planci) on the Great Barrier Reef. 1. Patterns of activity. J. Exp. Mar. Biol. Ecol. 220: 83-106.

Denny M.W. 1988. Biology and the mechanisms of wave-swept environment. Princeton University Press, New York.

Doering P.H., Phillips D.W. 1983. Maintenance of the shore-level size gradient in the Marine Snail Tegula funebralis (A. Adams): Importance of behavioural responses to Light and Sea Star Predators. J. Exp. Mar. Ecol. 67: 159-173.

Dos Santos G.A.P., Derycke S., Fonseca-Genevois V.G., Coelho L.C.B.B., Correia M.T.S., Moens T. 2008. Differential effects of food availability on population growth and fitness of three species of estuarine, bacterial-feeding nematodes. J. Exp. Mar. Biol. Ecol. 355: 27-40.

Fowler-Walker M.J., Connell S.D. 2002. Opposing states of subtidal habitat across temperate Australia: consistency and predictability in kelp canopy-benthic associations. Mar. Ecol. Prog. Ser. 240: 49-56.

Freeman S.M. 2003. Size-dependent distribution, abundance and diurnal rhythmicity patterns in the short-spined sea urchin Anthocidaris crassispina. Est. Coast. Shelf. Sci. 58: 703-713.

Gaymer C.F., Himmelman J.H., Johnson L.E. 2001. Distribution and feeding ecology of the sea stars Leptasterias polaris and Asterias vulgaris in the northern Gulf of St Lawrence, Canada. J. Mar. Biol. Assoc. UK 81: 827-843.

Gianguzza P., Bonaviri C., Guidetti P. 2009. Crushing predation of the spiny star Marthasterias glacialis upon the sea urchin Paracentrotus lividus. Mar. Biol. 156: 1083-1086.

Guillou M. 1996. Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany, France. Oceanol. Acta 19: 415-420.

Harriague A.C., Albertelli G. 2007. Environmental factors controlling macrofaunal assemblages on six microtidal beaches of the Ligurian Sea (NW Mediterranean). Est. Coast. Shelf Sci. 73: 8-16.

Hosmer D.W., Lemeshow S. 2000. Applied logistic regression. John Wiley and Sons, New York.

Hutchinson G.E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? Am. Nat. 93: 145-159.

Larson B.A.S. 1968. Scuba-studies on vertical distribution of Swedish rocky-bottom echinoderms. A methodological study. Ophelia 5: 137-156.

Little C., Williams G., Trowbridge C.D. 2009. The biology of rocky shores (second edition). Oxford Univ. Press, Oxford.

Menge B.A. 1974. Effect of wave action and competition on brooding and reproductive effort in the sea star Leptasterias hexactis. Ecology 55: 84-93.

Mercier A., Hamel J.F. – 2008. Depth-related shift in life history strategies of a brooding and broadcasting deep-sea asteroid. Mar. Biol., 156: 205-223.

Ortega L., Tuya F., Haroun R.J. 2009. The sea urchin Diadema antillarum Phillipi, 1845 influences the diversity and composition of the mobile mega-invertebrate community on rocky bottoms off the Canary Archipelago. Rev. Biol. Mar. 44: 489-495.

Paine R.T. 1966. Food web complexity and species diversity. Am. Nat. 100: 675-676.

Penney A.J., Griffiths C.L. 1984. Prey selection and the impact of the starfish Marthasterias glacialis and other predators on the mussel Choromytilus meridionalis. J. Exp. Mar. Biol. Ecol. 75: 19-36.

Ramsay K., Turner J.R., Vize S.J., Richardson C.A. 2000. A link between predator density and arm loss in the starfish Marthasterias glacialis and Asterias rubens. J. Mar. Biol. Ass. UK 80: 565-566.

Rodrigues N.V., Maranhão P., Oliveira P., Alberto J. 2008. Guia de Espécies Submarinas, Portugal – Berlengas. Edição Instituto Politécnico de Leiria, Leiria.

Sagarin R.D., Gaines S.D. 2002. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol. Lett. 5: 137-147.

Savy S. 1987. Activity pattern of the sea star, Marthasterias glacialis in Port-Cros Bay (France, Mediterranean Coast). P.S.Z.N.I. Mar. Ecol. 8: 97-106.

Siddon C.E., Witman J.D. 2003. Influence of chronic, low-level hydrodynamic forces on subtidal community structure. Mar. Ecol. Prog. Ser. 261: 99-110.

Sloan N.A. 1980. Aspects of the feeding biology of asteroids. Oceanogr. Mar. Biol. Annu. Rev. 18: 57-124.

Sloan N.A., Aldridge T.H. 1981. Observations on an aggregation of the starfish Asterias rubens L. in Morecamble Bay, Lancashire, England. J. Nat. Hist. 15: 407-418.

Steffens M., Piepenburg D., Schmid M.K. 2006. Distribution and structure of macrobenthic fauna in the eastern Laptev Sea in relation to environmental factors. Polar Biol. 29: 837-848.

Tuya F., Wernberg T., Thomsen M.S. 2008. Testing the ‘abundant centre’ hypothesis on endemic reef fishes in south-western Australia. Mar. Ecol. Prog. Ser. 372: 225-230.

Verling E., Crook A.C., Barnes D.K.A., Harrison S.S.C. 2003. Structural dynamics of a sea-star (Marthasterias glacialis) population. J. Mar. Biol. Ass. UK 83: 583-592.

Whittaker R.H. 1970. Communities and Ecosystems. Macmillan, New York.

White T.C.R. 2008. The role of food, weather and climate in limiting the abundance of animals. Biol. Rev. 83: 227-248. PMid:18557977

Witman J.D., Dayton. P. 2001. Rocky subtidal communities. In: Bertness M.D., Gaines S.D., Hay M.E. (eds.), Marine Community Ecology, pp. 329-336, Sinauer Associates, Sunderland, Massachusetts.




How to Cite

Tuya F, Duarte P. Role of food availability in the bathymetric distribution of the starfish Marthasterias glacialis (Lamk.) on reefs of northern Portugal. Sci. mar. [Internet]. 2012Mar.30 [cited 2024Mar.3];76(1):9-15. Available from:




Most read articles by the same author(s)