Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea
DOI:
https://doi.org/10.3989/scimar.05106.007Keywords:
daily growth, larval growth, mesopelagic fish, Myctophidae, otolith microstructureAbstract
The age and growth patterns of the mesopelagic fish Ceratoscopelus maderensis (family Myctophidae) of the western Mediterranean Sea were described throughout its entire life cycle (from larvae to adult stages) using the sagittae otoliths of 59 individuals collected in December 2009. Three characteristic zones were identified along the cross-section of the sagittae (larval, metamorphic and juvenile-adult zones). Assuming growth rings as daily increments, the age of the analysed individuals (from 3.5 to 64 mm standard length [SL]) would range from 7 to 332 days. The relationship between the number of increments and the fish SL was fitted to a von Bertalanffy growth model (SL=70.5899Å~(1–exp(–0.0501(t+2.6705))). The growth pattern of C. maderensis in the western Mediterranean Sea was similar to that reported for this species in the northeast Atlantic Ocean. Though from a body size of 40-45 mm SL, growth rates declined more slowly in individuals from the western Mediterranean Sea, growth differences between these individuals and those from the northeast Atlantic Ocean were not statistically significant. This study provides new insights into the age and growth patterns of one of the most abundant mesopelagic fish species in the Mediterranean Sea that have clear implications for the study and management of marine ecosystems.
Downloads
References
Aguilar-Pereira A., Quijano-Puerto L. 2016. Relations between fish length to weight, and otolith length and weight, of the lionfish Pterois volitans in the Parque Nacional Arrecife Alacranes, southern Gulf of Mexico. Rev. Biol. Mar. Oceanogr. 51: 469-474. https://doi.org/10.4067/S0718-19572016000200025
Anderson T.R., Martin A.P., Lampitt R.S., et al. 2019. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES J. Mar. Sci. 76: 690-701. https://doi.org/10.1093/icesjms/fsx234
Bernal A. Olivar M.P., Maynou F., et al. 2015. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Progr. Oceanogr. 135: 1-17. https://doi.org/10.1016/j.pocean.2015.03.005
Brothers E.B., Mathews C. P., Lasker R. 1976. Daily growth increments in otoliths from larval and adult fishes. Fish. Bull. 74: 1-8.
Burnham K.P., Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer-Verlag, New York.
Burnham K.P., Anderson D.R. 2004. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res., 33: 261-304. https://doi.org/10.1177/0049124104268644
Cavallaro M., Battaglia P., Guerrera M.C., et al. 2019. Structure and ultrastructure study on photophores of the Madeira lanternfish, Ceratoscopelus maderensis (Lowe, 1839), Pisces: Myctophidae. Acta Zool. 100: 89-95. https://doi.org/10.1111/azo.12236
Contreras T., Olivar M.P., Bernal A., et al. 2015. Comparative feeding patterns of early stages of mesopelagic fishes with vertical habitat partitioning. Mar. Biol. 162: 2265-2277. https://doi.org/10.1007/s00227-015-2749-y
Degens E.T., Deuser W.G., Haedrich, R.L.1969. Molecular structure and composition of fish otoliths. Mar. Biol. 2: 105-113. https://doi.org/10.1007/BF00347005
Eckmann R. 2000. The influence of photoperiod and feeding frequency on the distinctness of daily otolith increments in larval whitefish (Coregonus lavaretus L.). Limnologica 30: 102-105. https://doi.org/10.1016/S0075-9511(00)80003-1
Emery W.J., Meincke J. 1986. Global water masses: summary and review. Oceanol. Acta, 9: 383-391.
Estrada M. 1985. Primary production at the deep chlorophyll maximum in the western Mediterranean. In: Gibbs P.E. (ed): Proc. Nineteenth Eur. Mar. Biol. Symp., pp. 135-143. https://doi.org/10.1007/978-1-4899-2248-9_12
Gartner J.V.Jr. 1991a. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. Mar. Biol. 111: 11-20. https://doi.org/10.1007/BF01986339
Gartner J.V.Jr. 1991b. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico (II). Age and growth patterns. Mar. Biol. 111: 21-27. https://doi.org/10.1007/BF01986340
Goodyear R.H., Gibbs R.H.Jr., Roper C.F.E., et al. 1972. Mediterranean biological studies. Smithson. Institution Washington DC Rep. 1-278.
Greely T.M., Gartner J.V.Jr., J.J. Torres. 1999. Age and growth of Electrona Antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar. Biol. 133: 145-158. https://doi.org/10.1007/s002270050453
Gjosaeter H. 1987. Primary growth increments in otoliths of six tropical myctophid species. Biol. Oceanogr. 4: 359-382.
Gjosaeter J., Kawaguchi K.A. 1980. A review of the world resources of mesopelagic fish. FAO Fisheries Technical Paper 193: 1-151.
Handeland S.O., Imsland A.K., Stefansson S.O. 2008. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture. 283: 36-42. https://doi.org/10.1016/j.aquaculture.2008.06.042
Harvey J.T., Loughlin T.R., Perez M.A., et al. 2000. Relationship between fish size and otolith length for 63 species of fishes from the eastern North Pacific Ocean. NOAA/National Marine Fisheries Service, Seattle. NOAA Tech. Rep. NMFS 150: 1-36.
Hayashi A., Kawaguchi K., Watanabe H., et al. 2001. Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fish. Sci. 67: 811-817. https://doi.org/10.1046/j.1444-2906.2001.00327.x
Houpert L., Testor P., Durrieu de Madron X., et al. 2015. Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Prog. Oceanogr. 132: 333-352. https://doi.org/10.1016/j.pocean.2014.11.004
Hulley P.A. 1981. Results of the research cruises of FRV "Walther Herwig" to South America. LVIII. Family Myctophidae. Archiv. Fischwiss. 31: 1-300.
Hulley P.A. 1984. Myctophidae. In: Whitehead P.J.P., Bauchot M.L., et al. (eds), Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO. 1: 429-483.
Jonsson G. 1992. Islenskir fiskar. Fiolvi. Reykjavik, Iceland. pp. 568. Kendall A. W., Ahlstrom E.H., Moser H.G. 1984. Early life history stages of fishes and their characters. In: Moser H.G., Richards W.J., Cohen D.M et al. (eds), Ontogeny and Systematics of Fishes, Am. Soc. Ichthyol. Herpetol. 1: 11-22.
Linkowsky T.B., Radtke R.L., Lenz, P.H., 1993. Otolith microstructure, age and growth of two species of Ceratoscopelus (Osteichthyes: Myctophidae) from the eastern North Atlantic. Jour. Exp. Mar. Biol. Ecol. 167: 237-260. https://doi.org/10.1016/0022-0981(93)90033-K
Methot R.D. Jr, Kramer D. 1981. Growth of northern anchovy, Engraulis mordax, and northern lampfish, Stenobrachius leucopsarus. Rapp. P-v. R.un. Cons. Int. l'Explor. Mer 178: 424-431.
Moku M., Hayashi A., Mori K., et al. 2005. Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp. J. Fish Biol. 67: 1481-1485. https://doi.org/10.1111/j.0022-1112.2005.00824.x
Morales-Nin B.1992. Determination of growth in bony fishes from otolith microstructure. FAO Fisheries Technical Paper. No. 322. Rome, FAO. 51pp. http://www.fao.org/3/t0529e/T0529E00.htm
Morales-Nin B. 2000. Review of the growth regulation processes of otolith daily increment formation. Fish. Res. 46: 53-67. https://doi.org/10.1016/S0165-7836(00)00133-8
Morel A., Andr. J.M. 1991. Pigment Distribution and Primary Production in the western Mediterranean as derived and modelled from coastal zone color scanner observations. J. Geophys. Res., 96 C7: 12685-12698. https://doi.org/10.1029/91JC00788
Moser H.G., Watson W. 2006. Myctophidae. In: Richards W.J. (eds), Early Stages of Atlantic Fishes: An identification guide for the western central North Atlantic. Taylor and Francis Group, U.S., pp. 473-589.
Mytilineou C., Politou C.Y., Papaconstantinou C., et al. 2005. Deep-water fish fauna in the Eastern Ionian Sea. Belg. J. Zool. 135: 229-233.
Naciri M., Lemaire C., Borsa P. et al. 1999. Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax), J.Hered. 90: 591-596. https://doi.org/10.1093/jhered/90.6.591
Ogle D.H. 2016. Introductory fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton. https://doi.org/10.1201/b19232
Olivar M.P., Bernal A., Mol. B. et al. 2012. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep-Sea Res. I 62: 53-69. https://doi.org/10.1016/j.dsr.2011.12.014
Olivar M.P., Sabat.s A., Alemany F., et al. 2014. Diel-depth distributions of fish larvae off the Balearic Islands (western Mediterranean) under two environmental scenarios. J. Mar. Syst. 138: 127-138. https://doi.org/10.1016/j.jmarsys.2013.10.009
Olivar M.P., Contreras T., Hulley P.A., et al. 2018. Variation in the diel vertical distributions of larvae and transforming stages of oceanic fishes across the tropical and equatorial Atlantic. Progr. Oceanogr. 160: 83-100. https://doi.org/10.1016/j.pocean.2017.12.005
Ozawa T., Pe.aflor C. 1990. Otolith Microstructure and early ontogeny of a myctophid species, Benthosema pterotum. Nippon Suisan Gakk. 56: 1987-1995. https://doi.org/10.2331/suisan.56.1987
Ratke R.L., Dean J.M. 1982. Increment formation in the otoliths of embryos, larvae, and juveniles of the mummichog, Fundulus heteroclitus. Fish. Bull. 80: 201-215.
Richards W.J. 2005. Early stages of Atlantic fishes: An identification guide for the western central North Atlantic. Taylor & Francis, Boca Raton, FL. 1: 524-525. https://doi.org/10.1201/9780203500217
Ricker W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 207-211.
Rountrey A.N., Coulson P.G., Meeuwig J.J., et al. 2014. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Glob. Change Biol. 20: 2450-2458. https://doi.org/10.1111/gcb.12617 PMid:24862838
Salat J., Garc.a M.A., Cruzado A., et al. 2002. Seasonal changes of water mass structure and shelf slope exchanges at the Ebro shelf (NW Mediterranean). Cont. Shelf Res.22: 327-346. https://doi.org/10.1016/S0278-4343(01)00031-0
Sarmiento-Lezcano A., Triay-Portella R., Castro J.J., et al. 2018. Age-based life-history parameters of the mesopelagic fish Notoscopelus resplendens (Richardson, 1845) in the Central Eastern Atlantic. Fish. Res. 204: 412-423. https://doi.org/10.1016/j.fishres.2018.03.016
Sassa C., Takahashi M. 2018. Comparative larval growth and mortality of mesopelagic fishes and their predatory impact on zooplankton in the Kuroshio region. Deep-Sea Res. I 131: 121-132. https://doi.org/10.1016/j.dsr.2017.11.007
Sassa C., Kawaguchi K., Hirota Y., et al. 2007. Distribution depth of the transforming stage larvae of myctophid fishes in the subtropical-tropical waters of the western North Pacific. Deep-Sea Res. I 54: 2181-2193. https://doi.org/10.1016/j.dsr.2007.09.006
Sassa C., Takahashi M., Tsukamoto Y. 2015. Distribution, hatch-date, growth, and mortality of larval Benthosema pterotum (Pisces: Myctophidae) in the shelf region of the East China Sea. J. Mar. Biol. Assoc. U.K. 95: 161-174. https://doi.org/10.1017/S0025315414001209
Saunders R.A., Louren.o S., Vieira R.P., et al. 2020. Age and growth of Brauer's lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean. J. Fish. Biol.96:364-377. https://doi.org/10.1111/jfb.14206 PMid:31729022
Secor D.H., Dean J.M., Laban E.H. 1991. Manual for otolith removal and preparation for microstructure examination. Baruch Inst. Mar. Biol. Coast. Res. 85 pp.
Silva A., Carrera P., Mass. J., et al. 2008. Geographical variability of sardine growth across the northeastern Atlantic and the Mediterranean Sea. Fish. Res. 90: 56-69. https://doi.org/10.1016/j.fishres.2007.09.011
Stevenson D.K., Campana S.E. 1992. Otolith Microstructure examination and Analysis. Can. B. Fish. Aquat. Sci. 117: 1-126.
St. John M.A., Borja A., Chust G., et al. 2016. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3: 31. https://doi.org/10.3389/fmars.2016.00031
T.ning A.V. 1918. Mediterranean Scopelidae: (Saurus, Aulopus, Chlorophthalmus, and Myctophum). Rep. Danish oceanogr. Exped. 1908-1910, 2(A7): 1-154.
Takagi K., Yatsu A., Moku M., et al. 2006. Age and growth of lanternfishes, Symbolophorus californiensis and Ceratoscopelus warmingii (Myctophidae), in the Kuroshio-Oyashio Transition Zone. Ichthyol. Res.53: 281-289. https://doi.org/10.1007/s10228-006-0346-2
Tom.s J., Panfili J. 2000. Otolith microstructure examination and growth patterns of Vinciguerria nimbaria (Photichthydae) in the tropical Atlantic Ocean. Fish. Res. 46:131-145. https://doi.org/10.1016/S0165-7836(00)00140-5
Tuset V.M., Lombarte A., Assis C.A. 2008. Otolith atlas for the western Mediterranean, north and Central Eastern Atlantic. Sci. Mar. 72S1: 7-198. https://doi.org/10.3989/scimar.2008.72s17
Von Bertalanffy L. 1938. A quantitative theory of organic growth. Hum. Biol. 10: 181-213.
Wang Y., Zhang J., Chen Z., et al. 2018. Age and growth of Myctophum asperum in the South China Sea based on otolith microstructure analysis. Deep-Sea Res. II 167: 121-127. https://doi.org/10.1016/j.dsr2.2018.07.004
Young J.W., Bulman C.M., Blaber S.J.M., et al. 1988. Age and growth of the lanternfish Lampanyctodes hectoris (Myctophidae) from eastern Tasmania, Australia. Mar. Biol. 99: 569-576. https://doi.org/10.1007/BF00392564
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.
Funding data
Instituto Español de Oceanografía
Grant numbers CTM2008-04489-C03-02