Los puertos deportivos como hábitats para comunidades de peces litorales: análisis comparativo de censos visuales, cámaras con cebo y trampas para peces
DOI:
https://doi.org/10.3989/scimar.04540.20APalabras clave:
desarrollo costero, puertos deportivos, pérdida de hábitat, poblamientos de peces, métodos de muestreo, eficiencias de muestreoResumen
La comprensión de papel ecológico que las estructuras artificiales pueden desempeñar en las comunidades de peces litorales requiere la recolección de datos precisos y fiables, a través de técnicas de muestreo eficientes. En este trabajo, las diferencias en la composición y estructura de los poblamientos de peces entre las caras interior y exterior de tres puertos deportivos situados en el océano septentrional Atlántico templado se investigaron mediante tres técnicas de muestreo complementarias: censos visuales (UVC), cámaras con cebo (BC) y trampas para peces (FT). UVC y BC registraron un número comparable de especies y abundancias relativas, que fueron mucho mayores que las registradas por FT. Esta mayor cantidad de datos recogidas apoya el uso de estas técnicas sobre FT en estudios ecológicos, especialmente cuando se trata de hábitats de elevada complejidad estructural como el caso de estructuras artificiales. Encontramos diferencias en los poblamientos de peces entre las caras interior y exterior de los puertos deportivos, independientemente del método de muestreo. Cuatro especies de pequeño tamaño (Similiparma lurida, Thalassoma pavo, Sarpa salpa y Symphodus roissali), asociadas a hábitats vegetales estructuralmente complejos, dominaron, en términos de abundancia, las caras exteriores de los puertos deportivos; Diplodus vulgaris, Diplodus sargus y Gobius niger, especies con alta plasticidad ecológica en los requerimientos del hábitat, dominaron las caras interiores. La información aportada en este estudio es de gran interés para desarrollar programas de monitoreo adecuados para determinar los efectos de las estructuras artificiales en las comunidades de peces.
Descargas
Citas
Airoldi L., Beck M.W. 2007. Loss, status and trends for coastal marine habitats of Europe. In: Gibson R.N., Atkinson R.J.A., Gordon J.D.M. (eds), Oceanography and marine biology, Vol 45. CRC Press-Taylor and Francis Group, Boca Raton, FL, pp. 345-405.
Anderson M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26: 32-46.
Bacheler N.M., Schobernd C.M., Schobernd Z.H., et al. 2013. Comparison of trap and underwater video gears for indexing reef fish presence and abundance in the southeast United States. Fish. Res. 143: 81-88. https://doi.org/10.1016/j.fishres.2013.01.013
Bohnsack J.A. 1989. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioural preferences? Bull. Mar. Sci. 44: 631-645.
Bouchoucha M., Darnaude A.M., Gudefin A., et al. 2016. Potential use of marinas as nursery grounds by rocky fishes: insights from four Diplodus species in the Mediterranean. Mar. Ecol. Prog. Ser. 547: 193-209. https://doi.org/10.3354/meps11641
Cappo M., Harvey E., Shortis M. 2006. "Counting and measuring fish with baited video techniques - an overview". Australian Society for Fish Biology; 2006 Workshops Proceedings. Australia.
Carr M.H., Hixon M.A. 1997. Artificial reefs: the importance of comparisons with natural reefs. Fisheries 22: 28-33. https://doi.org/10.1577/1548-8446(1997)022<0028:ARTIOC>2.0.CO;2
Cenci E., Pizzolon M., Chimento N., et al. 2011. The influence of a new artificial structure on fish assemblages of adjacent hard substrata. Est. Coast. Shelf. Sci. 91: 133?149. https://doi.org/10.1016/j.ecss.2010.10.009
Chambers J.M., Hastie T.J. 1993. Statistical models in S. Chapman and Hall.
Clarke K.R., Warwick R.M. 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth.
Clarke K.R., Somerfield P.J., Chapman M.G. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330: 55-80. https://doi.org/10.1016/j.jembe.2005.12.017
Clynick B.G. 2006. Assemblages of fish associated with coastal marinas in north-western Italy. J. Mar. Biol. Assoc. UK. 86: 847-852. https://doi.org/10.1017/S0025315406013786
Clynick B.G. 2008. Characteristics of an urban fish assemblage: distribution of fish associated with coastal marinas. Mar. Environ. Res. 65: 18-33. https://doi.org/10.1016/j.marenvres.2007.07.005 PMid:17884158
Clynick B.G., Chapman M.G., Underwood A.J. 2007. Effects of epibiota on assemblages of fish associated with urban structures. Mar. Ecol. Prog. Ser. 332: 201-210. https://doi.org/10.3354/meps332201
Colton M.A., Swearer S.E. 2010. A comparison of two survey methods: differences between underwater visual census and baited remote underwater video. Mar. Ecol. Prog. Ser. 400: 19-36. https://doi.org/10.3354/meps08377
Connell S.D., Glasby T.M. 1999. Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res. 47: 373-387. https://doi.org/10.1016/S0141-1136(98)00126-3
Courrat A., Lobry J., Nicolas D., et al. 2009. Anthropogenic disturbance on nursery function of estuarine areas for marine species. Est. Coast. Shelf. Sci. 81: 179-190. https://doi.org/10.1016/j.ecss.2008.10.017
da Cunha P.L., Antunes M.M. 2008. Notes on Gobiidae (Teleostei) from soft bottoms of the Portuguese coast. Cybium 32: 309-315.
Edgar G.J., Barrett N.S., Morton A.J. 2004. Biases associated with the use of underwater visual census techniques to quantify fish density and size-structure. J. Exp. Mar. Biol. Ecol. 308: 269-290. https://doi.org/10.1016/j.jembe.2004.03.004
García-Mederos A.M., Tuya F., Tuset V.M. 2016. Life-history strategies of a conspicuous reef fish, the Canary damsel Similiparma lurida (Pomacentridae) in the northeastern Atlantic. Sci. Mar. 80: 57-68.
Gonçalves J.M.S., Bentes L., Coelho R., et al. 2003. Age and growth, maturity, mortality and yield-per-recruit for two banded bream (Diplodus vulgaris Geoffr.) from the south coast of Portugal. Fish. Res. 62: 349-359. https://doi.org/10.1016/S0165-7836(02)00280-1
González J.A., Pajuelo J.G., Lorenzo J.M., et al. 2012. Talla mínima de captura: peces, crustáceos y moluscos de interés pesquero en Canarias: una propuesta científica para su conservación. Consejería de Agricultura, Ganadería Pesca y Alimentación, 248 pp.
Guidetti P. 2004. Fish assemblages associated with coastal defence structures in south-western Italy (Mediterranean Sea). J. Mar. Biol. Assoc. UK. 84: 669-670. https://doi.org/10.1017/S0025315404009725h
Halpern B.S., Walbridge S., Selkoe K.A., et al. 2008. A global map of human impact on marine ecosystems. Science 319: 948-952. https://doi.org/10.1126/science.1149345 PMid:18276889
Harmelin-Vivien M.L.,Harmelin J.G., Chauvet C., et al. 1985. Evaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Rev. Ecol. Terre Vie 40: 467-539.
Harvey E.S., Shortis M., Stadler M., et al. 2002. A comparison of the accuracy and precision of measurements from single and stereo-video systems. Mar. Tech. Soc. J. 36: 38-49. https://doi.org/10.4031/002533202787914106
Harvey E.S., Newman S.J., McLean D.L., et al. 2012. Comparison of the relative efficiencies of stereo-BRUVs and traps for sampling tropical continental shelf demersal fishes. Fish. Res. 125: 108-120. https://doi.org/10.1016/j.fishres.2012.01.026
Jones G.P. 1984. Population ecology of the temperate reef fish Pseudolabrus celidotus Bloch and Schneider (Pisces: Labridae). I. Factors influencing recruitment. J. Exp. Mar. Biol. Eco1. 75: 257-276.
Langlois T.J., Harvey E.S., Fitzpatrick B., et al. 2010. Cost-efficient sampling of fish assemblages: comparison of baited video stations and diver video transects. Aquat. Biol. 9: 155-168. https://doi.org/10.3354/ab00235
Leathwick J.R., Elith J., Hastie T. 2006. Comparative performance of generalised additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 199: 188-196. https://doi.org/10.1016/j.ecolmodel.2006.05.022
Lincoln-Smith M.P., Bell J.D., Hair C.A. 1991. Spatial variation in abundance of recently settled rocky reef fish in southeastern Australia: implications for detecting change. Mar. Ecol. Prog. Ser. 77: 95-103. https://doi.org/10.3354/meps077095
Lowry M., Folpp H., Gregson M., et al. 2012. Comparison of baited remote underwater video (BRUV) and underwater visual census (UVC) for assessment of artificial reefs in estuaries. J. Exp. Mar. Biol. Ecol. 416: 243-253. https://doi.org/10.1016/j.jembe.2012.01.013
Monteiro C., Lam Hoai T., Lasserre G. 1987. Distribution chronologique des poissons dans deux stations de la lagune Ria Formosa (Portugal). Oceanol. Acta 10: 359-371.
Murphy H.M., Jenkins G.P. 2010. Observational methods used in marine spatial monitoring of fishes and associated habitats: a review. Mar. Freshw. Res. 61: 236-252. https://doi.org/10.1071/MF09068
Ohlhorst S.L., Liddell W.D., Taylor R.J., et al. 1988. Evaluation of reef census techniques. Proc. 6th Intl. Coral Reef. Symp. 2: 319-324. Townsville, Australia.
Pastor J., Koeck B., Astruch P., et al. 2013. Coastal man-made habitats: potential nurseries for an exploited fish species, Diplodus sargus (Linnaeus, 1758). Fish. Res. 148: 74-80. https://doi.org/10.1016/j.fishres.2013.08.014
Peirano A., Niccolai I., Mauro R., et al. 2001. Seasonal grazing and food preference of herbivores in a Posidonia oceanica meadow. Sci. Mar. 65: 367-374. https://doi.org/10.3989/scimar.2001.65n4367
Pizzolon M., Cenci E., Mazzoldi C. 2008. The onset of fish colonization in a coastal defence structure (Chioggia, Northern Adriatic Sea). Est. Coast. Shelf. Sci. 78: 166-178. https://doi.org/10.1016/j.ecss.2007.11.014
Rilov G., Benayahu Y. 2000. Fish assemblage on natural versus vertical artificial reefs: the rehabilitation perspective. Mar. Biol. 136: 931-942. https://doi.org/10.1007/s002279900250
Scharf F.S., Manderson J.P., Fabrizio M.C. 2006. The effects of sea-floor habitat complexity on survival of juvenile fishes: Species-specific interactions with structural refuge. J. Exp. Mar. Biol. Ecol. 335: 167-176. https://doi.org/10.1016/j.jembe.2006.03.018
Seitz R.D., Wennhage H., Bergström U., et al. 2014. Ecological value of coastal habitats for commercially and ecologically important species. ICES. J. Mar. Sci. 71: 648-665. https://doi.org/10.1093/icesjms/fst152
Steneck R.S., Dethier M.N. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69: 476-498. https://doi.org/10.2307/3545860
Stobart B, Garcia-Charton J.A., Espejo C., et al. 2007. A baited underwater video technique to assess shallow-water Mediterranean fish assemblages: Methodological evaluation. J. Exp. Mar. Biol. Ecol. 345: 158-174. https://doi.org/10.1016/j.jembe.2007.02.009
Tuya F., Haroun R.J. 2006. Spatial patterns and response to wave exposure of shallow water algal assemblages across the Canarian Archipelago: a multi-scaled approach. Mar. Ecol. Prog. Ser. 311: 15-28. https://doi.org/10.3354/meps311015
Tuya F., Boyra A., Sanchez-Jerez P., et al. 2005. Multivariate analysis of the bentho-demersal ichthyofauna along soft bottoms of the Eastern Atlantic: comparison between unvegetated substrates, seagrass meadows and sandy bottoms beneath sea-cage fish farms. Mar. Biol. 147: 1229-1237. https://doi.org/10.1007/s00227-005-0018-1
Tuya F., Wernberg T., Thomsen M.S. 2011. The relative influence of local to regional drivers of variation in reef fishes. J. Fish. Biol. 79: 217-234. https://doi.org/10.1111/j.1095-8649.2011.03015.x PMid:21722121
Underwood A.J. 1981. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Annu. Rev. 19: 513-605.
Ventura D., Jona Lasinio G., Ardizzone G. 2014. Temporal partitioning of microhabitat use among four juvenile fish species of the genus Diplodus (Pisces: Perciformes, Sparidae). Mar. Ecol. 36: 1-20.
Wakefield C.B., Lewis P.D., Coutts T.B., et al. 2013. Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: comparison of baited videos and opera-house traps. PloS ONE 8: e59959. https://doi.org/10.1371/journal.pone.0059959 PMid:23555847 PMCid:PMC3605449
Watson D.L., Harvey E.S., Anderson M.J., et al. 2005. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar. Biol. 148: 415-425. https://doi.org/10.1007/s00227-005-0090-6
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.