Scientia Marina, Vol 68, No S1 (2004)

Mechanisms regulating amphipod population density within macroalgal communities with low predator impact


https://doi.org/10.3989/scimar.2004.68s1189

Hartvig Christie
Norwegian Institute for Nature Research (NINA), Norway

Patrik Kraufvelin
Åbo Akademi University, Environmental and Marine Biology, Finland

Abstract


In eight mesocosms (land based basins) macroalgae communities with associated fauna were transplanted from the sea and established during two years. Then, different doses of nutrients (N and P) were added to the basins throughout the following three years. During the period of nutrient addition, macroinvertebrate grazers showed seasonal fluctuations with densities usually between 500,000 and 1 million individuals per mesocosm during summer and to a level of about 100,000 during winter. The macroinvertebrate grazers mainly consisted of about 10 species of amphipods and isopods, among which the amphipod Gammarus locusta dominated strongly by biomass. Although the number of predators was very low, the grazer populations never reached a density where considerable grazing impact could be found on the macroalgae. No increase in grazer density was found in the basins with improved nutrient conditions. Thus food quality may be insufficient for further population growth, or density dependant regulation mechanisms may have prevented the grazers from flourishing and overgrazing the system. In aquarium experiments we showed that G. locusta could grow and reproduce on Fucus serratus, Ulva lactuca, periphyton and detritus, and that cannibalism by adult G. locusta on juveniles may have great impact on the population growth. The basins were run with a water flow through system. Nets were placed in front of the inflow and outflow tubes to measure immigration and emigration. Only few individuals (and no Gammarus sp.) were recorded in the inflowing water, while high numbers of both amphipods and isopods were found in the outflowing water. Emigration reached peak values during night-time, and it was then two to three times as high as during day-time. Emigration of mobile grazers from the basins amounted to 1-2% of the standing stock daily. These mechanisms that regulate grazers do contribute to maintenance of the seaweed dominance and thus the stability of the seaweed community.

Keywords


Mesocosm; macroalgae; grazers; Gammarus locusta; population regulation; eutrophication

Full Text:


PDF


Copyright (c) 2004 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es