Scientia Marina, Vol 84, No 2 (2020)

Oxidative stress biomarkers in the gills of the bivalve Mactra stultorum exposed to acrylamide


https://doi.org/10.3989/scimar.04993.11A

Wafa Trabelsi
Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, Univ. Tunis, Tunisia
orcid https://orcid.org/0000-0002-1114-4080

Chaima Fouzai
Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, Univ. Tunis, Tunisia
orcid https://orcid.org/0000-0001-7588-1859

Imene Chetoui
Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, Univ. Tunis, Tunisia
orcid https://orcid.org/0000-0002-2259-5397

Safa Bejaoui
Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, Univ. Tunis, Tunisia
orcid https://orcid.org/0000-0002-7946-2763

Khaoula Telahigue
Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, Univ. Tunis, Tunisia
orcid https://orcid.org/0000-0001-8841-9911

Imen Rabeh
Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, Univ. Tunis, Tunisia
orcid https://orcid.org/0000-0002-0307-473X

Mhamed El Cafsi
Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, Univ. Tunis, Tunisia
orcid https://orcid.org/0000-0002-9771-1110

Nejla Soudani
Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, Univ. Tunis, Tunisia
orcid https://orcid.org/0000-0002-7652-9678

Abstract


Acrylamide (ACR) is among the most deleterious pollutants in the environment and presents a serious risk to humans and ecosystems. The purpose of this study was to assess its effects when administered at different concentrations (5, 10 and 20 mg L–1) to evaluate antioxidant status in the gills of Mactra stultorum. Our results showed, after five days of treat­ment, an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOH), advanced oxidation protein products (AOPP), reduced glutathione (GSH), ascorbic acid (Vit C) and metallothionein (MDA) levels in gills of treated clams compared with controls. Moreover, an increase in superoxide dismutase (SOD) and a significant decrease in glutathione peroxidase (GPx) activities were also observed. Acrylamide induced neurotoxicity, as evidenced by the inhibition of acetylcholinesterase (AChE) activity in a dose-dependent manner. Overall, our results indicated that oxidative stress may be considered one of the mechanisms behind acrylamide toxicity in bivalves, although the subject requires more research.

Keywords


acrylamide; exposure; Mactra stultorum; gills; antioxidant status; acetylcholinesterase

Full Text:


HTML PDF XML

References


Abdallah M.A.M. 2013. Bioaccumulation of Heavy Metals in Mol­lusca Species and Assessment of Potential Risks to Human Health. Bull. Environ. Contam. Toxicol. 90: 552-557.

Adams S. 2001. Reactive carbonyl formation by oxidative and non-oxidative pathways. Front. Biosci. 6: 17-24.

Adamsa A., Hamdania S., Van Lanckera F., et al. 2010. Stability of acrylamide in model systems and its reactivity with selected nucleophiles. Food. Res. Int. 43: 1517-1522.

Alderman C.J.J., Shah S., Foreman J.C., et al. 2002. The role of advanced oxidation protein products in regulation of dendritic cell function. Free. Radic. Biol. Med. 32: 377-385.

Andersen F.A. 2005. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int. J. Toxicol. 24: 21-50.

Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Bio­chem. 44 : 276-277.

Bejaoui S., Telahigue K., Chetoui I., et al. 2018. Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupisdecussata Gills Collected From Two Coast Tunisian Lagoons. J. Chem. Environ. Biol. Eng. 2: 44-51.

Birben E., Sahiner U.M., Sackesen C., et al. 2012. Oxidative stress and antioxidant defense. World. Allergy. Organ. J. 5: 9-19.

Cai L., Satoh M., Tohyama C., et al. 1999. Metallothionein in ra­diation exposure: its induction and protective role. Toxicology 132: 85-98.

Chetoui I., Rabeh I., Telahigue K., et al. 2010. Valorisation de l’apportnutritionnel d’un mollusque bivalve Mactra corallina des côtestunisiennes (Kalaât El Andalous). Bull. Inst. Natn. Scien. Tech. Mer de Salmmbô 37: 83-88.

Contardo-Jara V., Galanti L.N., Amé M.V., et al. 2009. Biotransfor­mation and antioxidant enzymes of Limnoperna fortunei detect site impact in water courses of Córdoba, Argentina. Ecotoxicol. Environ. Saf. 72: 1871- 1880.

Della Torre C., Balbib T., Grassia G., et al. 2015. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 297: 92-100.

Draper H.H., Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 86: 421-431.

Duan X., Wang Q.C., Chen K.L., et al. 2015. Acrylamide toxic ef­fects on mouse oocyte quality and fertility in vivo. Sci. Rep. 5: 11562.

Ellman G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Bio­phys. 82: 70-77.

Ellman G.L., Courtney K.D., Andres V. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95.

Erkekoglu P., Baydar T. 2014. Acrylamide neurotoxicity. Nutr. Neurosci. 17: 49- 57.

Fasulo B., Deuring R., Murawska M., et al. 2012. The Drosophila Mi-2 chromatin-remodeling factor regulates higher-order chro­matin structure and cohesin dynamics in vivo. PLoS. Genet. 8: e1002878.

Favier A. 2003. Le Stress oxydant. Intérêt conceptuel et expéri­mentaldans la compréhension des mécanismes des maladies et potentielthérapeutique. L’actual. Chim. 11: 108-115.

Flohe L., Gunzler W.A. 1984. Assays of gluthathione peroxidase. Methods. Enzymol. 105: 114-121.

Friedman M. 2003. Chemistry, acrylamide: A review. J. Agric. Food. Chem. 51: 4504-4526.

Greim H., Snyder R. 2018. Toxicology and Risk Assessment: A Comprehensive Introduction. John Wiley & Sons, Hoboken, USA, 840 pp.

Haleng J., Pincemail J., Defraigne J.O., et al. 2007. Oxidative stress. Rev. Med. Liege 62: 628-638.

International Agency for Research on Cancer (IARC). 1994. IARC working group on the evaluation of carcinogenic risks to hu­mans: some industrial chemicals. IARC Monogr. Eval. Car­cinog. Risks. Hum. 60: 1-560.

Jacques-Silva M.C., Nogueira C.W., Broch L.C. 2001. Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol. Toxi­col. 88: 119-125.

Jiang Z.Y., Hunt J.V., Wolff S.P. 1992. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low-density lipoprotein. Anal. Biochem. 202: 384-389.

Jollow D.J., Mitchell J.R., Zampaglione N., et al. 1974. Bromoben­zene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic me­tabolite. Pharmacology 11: 151-169.

Jomova K., Valko M. 2011. Advances in metal-induced oxidative stress and human disease. Toxicology 283 : 65-87.

Kayali R., Cakatay U., Akcay T., et al. 2006. Effect of alphalipoi­cacid supplementation on markers of protein oxidation in post­mitotictissues of ageing rat. Cell. Biochem. Funct. 24: 79-85.

Kim S.M., Beak J.M., Lim S.M., et al. 2015. Modified Lipoproteins by Acrylamide Showed More Atherogenic Properties and Ex­posure of Acrylamide Induces Acute Hyperlipidemia and Fatty Liver Changes in Zebrafish. Cardiovasc. Toxicol. 15: 300-308.

Krishnan N., Kodrík D., Kłudkiewicz B., et al. 2009. Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect. Biochem. Mol. Biol. 39: 180-188.

Kusnin N., Syed M.A., Ahmad S.A. 2015. Toxicity, pollution and biodegradation of acrylamide - a mini review. J. Biochem. Mi­crobiol. Biotechnol. 3: 6-12.

Larguinho M., Cordeiro A., Diniz M.S., et al. 2014. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide. Environ. Res. 135: 55-62.

LoPachin R.M., Gavin T. 2012. Molecular mechanism of acryla­mide neurotoxicity: lessons learned from organic chemistry. Environ. Health Perspect. 120: 1650-1657.

Lowry O.H., Roseborouch N.I., Farrand A.L., et al. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 263-275.

Mottram D.S., Wedzicha B.L., Dodson A.T. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448-449.

Petrovic S., Ozretic B., Krajnovic-Ozretic M., et al. 2001. Lysoso­mal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in afield study. Mar. Pollut. Bull. 42: 1373-1378.

R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Comput­ing, Vienna.

Schmatz R., Mazzanti C.M., Spanevello R., et al. 2009. Resveratrol prevents memory deficits and the increase in acetylcholinest­erase activity in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 610: 42-48.

Schwarz K.B. 1996. Oxidative stress during viral infection: a re­view. Free Radic. Biol. Med. 21: 641-649.

Sheehan D., McDonagh B. 2008. Oxidative stress and bivalves: a proteomic approach. Invertebr. Surviv. J. 5: 110-123.

Stanicka J., Landry W., Cotter T.G. 2015. Oxidative stress biomark­ers and ROS molecular probes. Oxidative Stress: Diagnostics, Prevention. and Therapy. Vol. 2, pp. 353-374.

Tepe Y. 2015. Acrylamide in surface and drinking water. acryla­mide in food: analysis, content and potential health effects. Giresun Univ., Turkey, pp. 275-293.

Tepe Y., Çebi A. 2017. Acrylamide in environmental water: a re­view on sources, exposure, and public health risks. Exposure and Health 11: 3-12.

Touzé S., Guerin V., Guezennec A.G., et al. 2015. Dissemination of acrylamide monomer from polyacrylamide-based flocculant use—sand and gravel quarry case study. Environ. Sci. Pollut. Res. 22: 6423-6430.

Trabelsi W., Chetoui I., Fouzai C., et al. 2019. Redox status and fatty acids composition of Mactra corallina digestive gland fol­lowing exposure to acrylamide. Environ. Sci. Pollut. Res. 26: 22197-22208.

Viarengo A., Ponzano E., Dondero F., et al. 1997. A simple spec­trophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antartic mol­luscs. Mar. Environ. Res. 44: 69-84.

Yilmaz B., Yildizbayrak N., Aydin Y., et al. 2017. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum. Exp. Toxicol. 36: 1225-1235.

Zamora R., Delgado R.M., Hidalgo F.J. 2010. Model reactions of acrylamide with selected amino compounds. J. Agric. Food. Chem. 58: 1708-1713.

Zhou Z., Sun X., Kang Y.J. 2002. Metallothionein protection against alcoholic liver injury through inhibition of oxidative stress. Exp. Biol. Med. 227: 214-222.

Zorita L., Ortiz-Zarragoitia M., Solo M., et al. 2006. Biomarkers in mussels from a copper site gradient (Visnes, Norway): an integrated biochemical, histochemical and histological study. Aquat. Toxicol. 78: 109-116.




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es