Biomarcadores de estrés oxidativo en las branquias del bivalvo Mactra stultorum expuesto a acrilamida
DOI:
https://doi.org/10.3989/scimar.04993.11APalabras clave:
acrilamida, exposición, Mactra stultorum, branquias, estado antioxidante, acetilcolinesterasaResumen
La acrilamida (ACR) es uno de los contaminantes más perjudiciales en el medio ambiente y presenta un grave riesgo para los seres humanos y los ecosistemas. El objetivo de este estudio es evaluar los efectos del ACR administrado a diferentes concentraciones (5, 10 y 20 mg L–1) con el fin de evaluar el estado antioxidante en las branquias de Mactra stultorum. Nuestros resultados mostraron, después de 5 días de tratamiento, un aumento en los niveles de malondialdehído (MDA), hidroperóxidos lipídicos (LOOH), proteínas de oxidación avanzada (AOPP), glutatión reducido (GSH), ácido ascórbico (vit C) y metalotioneínas (MTs) en las branquias de las almejas tratadas en comparación con los controles. Además, también se observó un aumento en la superóxidodismutasa (SOD) y una disminución significativa en las actividades de glutatión peroxidasa (GPx). La acrilamida indujo neurotoxicidad como lo demuestra la inhibición de la actividad de la acetilcolinesterasa (AChE) de una manera dependiente de la dosis. En general, nuestros resultados indicaron que el estrés oxidativo puede considerarse como uno de los mecanismos detrás de la toxicidad por ACR en los bivalvos, aunque el tópico debería beneficiarse de más investigaciones.
Descargas
Citas
Abdallah M.A.M. 2013. Bioaccumulation of Heavy Metals in Mollusca Species and Assessment of Potential Risks to Human Health. Bull. Environ. Contam. Toxicol. 90: 552-557. https://doi.org/10.1007/s00128-013-0959-x PMid:23377776
Adams S. 2001. Reactive carbonyl formation by oxidative and non-oxidative pathways. Front. Biosci. 6: 17-24. https://doi.org/10.2741/A581
Adamsa A., Hamdania S., Van Lanckera F., et al. 2010. Stability of acrylamide in model systems and its reactivity with selected nucleophiles. Food. Res. Int. 43: 1517-1522. https://doi.org/10.1016/j.foodres.2010.04.033
Alderman C.J.J., Shah S., Foreman J.C., et al. 2002. The role of advanced oxidation protein products in regulation of dendritic cell function. Free. Radic. Biol. Med. 32: 377-385. https://doi.org/10.1016/S0891-5849(01)00735-3
Andersen F.A. 2005. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int. J. Toxicol. 24: 21-50. https://doi.org/10.1080/10915810590953842 PMid:16154914
Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 : 276-277. https://doi.org/10.1016/0003-2697(71)90370-8
Bejaoui S., Telahigue K., Chetoui I., et al. 2018. Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupisdecussata Gills Collected From Two Coast Tunisian Lagoons. J. Chem. Environ. Biol. Eng. 2: 44-51.
Birben E., Sahiner U.M., Sackesen C., et al. 2012. Oxidative stress and antioxidant defense. World. Allergy. Organ. J. 5: 9-19. https://doi.org/10.1097/WOX.0b013e3182439613 PMid:23268465 PMCid:PMC3488923
Cai L., Satoh M., Tohyama C., et al. 1999. Metallothionein in radiation exposure: its induction and protective role. Toxicology 132: 85-98. https://doi.org/10.1016/S0300-483X(98)00150-4
Chetoui I., Rabeh I., Telahigue K., et al. 2010. Valorisation de l'apportnutritionnel d'un mollusque bivalve Mactra corallina des côtestunisiennes (Kalaât El Andalous). Bull. Inst. Natn. Scien. Tech. Mer de Salmmbô 37: 83-88.
Contardo-Jara V., Galanti L.N., Amé M.V., et al. 2009. Biotransformation and antioxidant enzymes of Limnoperna fortunei detect site impact in water courses of Córdoba, Argentina. Ecotoxicol. Environ. Saf. 72: 1871- 1880. https://doi.org/10.1016/j.ecoenv.2009.07.001 PMid:19631986
Della Torre C., Balbib T., Grassia G., et al. 2015. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 297: 92-100. https://doi.org/10.1016/j.jhazmat.2015.04.072 PMid:25956639
Draper H.H., Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 86: 421-431. https://doi.org/10.1016/0076-6879(90)86135-I
Duan X., Wang Q.C., Chen K.L., et al. 2015. Acrylamide toxic effects on mouse oocyte quality and fertility in vivo. Sci. Rep. 5: 11562. https://doi.org/10.1038/srep11562 PMid:26108138 PMCid:PMC4479821
Ellman G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
Ellman G.L., Courtney K.D., Andres V. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
Erkekoglu P., Baydar T. 2014. Acrylamide neurotoxicity. Nutr. Neurosci. 17: 49-57. https://doi.org/10.1179/1476830513Y.0000000065 PMid:23541332
Fasulo B., Deuring R., Murawska M., et al. 2012. The Drosophila Mi-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo. PLoS. Genet. 8: e1002878. https://doi.org/10.1371/journal.pgen.1002878 PMid:22912596 PMCid:PMC3415455
Favier A. 2003. Le Stress oxydant. Intérêt conceptuel et expérimentaldans la compréhension des mécanismes des maladies et potentielthérapeutique. L'actual. Chim. 11: 108-115.
Flohe L., Gunzler W.A. 1984. Assays of gluthathione peroxidase. Methods. Enzymol. 105: 114-121. https://doi.org/10.1016/S0076-6879(84)05015-1
Friedman M. 2003. Chemistry, acrylamide: A review. J. Agric. Food. Chem. 51: 4504-4526. https://doi.org/10.1021/jf030204+ PMid:14705871
Greim H., Snyder R. 2018. Toxicology and Risk Assessment: A Comprehensive Introduction. John Wiley & Sons, Hoboken, USA, 840 pp. https://doi.org/10.1002/9781119135944
Haleng J., Pincemail J., Defraigne J.O., et al. 2007. Oxidative stress. Rev. Med. Liege 62: 628-638.
International Agency for Research on Cancer (IARC). 1994. IARC working group on the evaluation of carcinogenic risks to humans: some industrial chemicals. IARC Monogr. Eval. Carcinog. Risks. Hum. 60: 1-560.
Jacques-Silva M.C., Nogueira C.W., Broch L.C. 2001. Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol. Toxicol. 88: 119-125. https://doi.org/10.1034/j.1600-0773.2001.d01-92.x PMid:11245406
Jiang Z.Y., Hunt J.V., Wolff S.P. 1992. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low-density lipoprotein. Anal. Biochem. 202: 384-389. https://doi.org/10.1016/0003-2697(92)90122-N
Jollow D.J., Mitchell J.R., Zampaglione N., et al. 1974. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11: 151-169. https://doi.org/10.1159/000136485 PMid:4831804
Jomova K., Valko M. 2011. Advances in metal-induced oxidative stress and human disease. Toxicology 283 : 65-87. https://doi.org/10.1016/j.tox.2011.03.001 PMid:21414382
Kayali R., Cakatay U., Akcay T., et al. 2006. Effect of alphalipoicacid supplementation on markers of protein oxidation in postmitotictissues of ageing rat. Cell. Biochem. Funct. 24: 79-85. https://doi.org/10.1002/cbf.1190 PMid:15532093
Kim S.M., Beak J.M., Lim S.M., et al. 2015. Modified Lipoproteins by Acrylamide Showed More Atherogenic Properties and Exposure of Acrylamide Induces Acute Hyperlipidemia and Fatty Liver Changes in Zebrafish. Cardiovasc. Toxicol. 15: 300-308. https://doi.org/10.1007/s12012-014-9294-7 PMid:25503949
Krishnan N., Kodrík D., Kłudkiewicz B., et al. 2009. Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect. Biochem. Mol. Biol. 39: 180-188. https://doi.org/10.1016/j.ibmb.2008.11.001 PMid:19049872
Kusnin N., Syed M.A., Ahmad S.A. 2015. Toxicity, pollution and biodegradation of acrylamide - a mini review. J. Biochem. Microbiol. Biotechnol. 3: 6-12.
Larguinho M., Cordeiro A., Diniz M.S., et al. 2014. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide. Environ. Res. 135: 55-62. https://doi.org/10.1016/j.envres.2014.09.004 PMid:25262075
LoPachin R.M., Gavin T. 2012. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. Environ. Health Perspect. 120: 1650-1657. https://doi.org/10.1289/ehp.1205432 PMid:23060388 PMCid:PMC3548275
Lowry O.H., Roseborouch N.I., Farrand A.L., et al. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 263-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Mottram D.S., Wedzicha B.L., Dodson A.T. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448-449. https://doi.org/10.1038/419448a PMid:12368844
Petrovic S., Ozretic B., Krajnovic-Ozretic M., et al. 2001. Lysosomal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in afield study. Mar. Pollut. Bull. 42: 1373-1378. https://doi.org/10.1016/S0025-326X(01)00167-9
R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Schmatz R., Mazzanti C.M., Spanevello R., et al. 2009. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 610: 42-48. https://doi.org/10.1016/j.ejphar.2009.03.032 PMid:19303406
Schwarz K.B. 1996. Oxidative stress during viral infection: a review. Free Radic. Biol. Med. 21: 641-649. https://doi.org/10.1016/0891-5849(96)00131-1
Sheehan D., McDonagh B. 2008. Oxidative stress and bivalves: a proteomic approach. Invertebr. Surviv. J. 5: 110-123.
Stanicka J., Landry W., Cotter T.G. 2015. Oxidative stress biomarkers and ROS molecular probes. Oxidative Stress: Diagnostics, Prevention. and Therapy. Vol. 2, pp. 353-374. https://doi.org/10.1021/bk-2015-1200.ch015
Tepe Y. 2015. Acrylamide in surface and drinking water. acrylamide in food: analysis, content and potential health effects. Giresun Univ., Turkey, pp. 275-293. https://doi.org/10.1016/B978-0-12-802832-2.00014-0
Tepe Y., Çebi A. 2017. Acrylamide in environmental water: a review on sources, exposure, and public health risks. Exposure and Health 11: 3-12. https://doi.org/10.1007/s12403-017-0261-y
Touzé S., Guerin V., Guezennec A.G., et al. 2015. Dissemination of acrylamide monomer from polyacrylamide-based flocculant use-sand and gravel quarry case study. Environ. Sci. Pollut. Res. 22: 6423-6430. https://doi.org/10.1007/s11356-014-3177-0 PMid:25182426
Trabelsi W., Chetoui I., Fouzai C., et al. 2019. Redox status and fatty acids composition of Mactra corallina digestive gland following exposure to acrylamide. Environ. Sci. Pollut. Res. 26: 22197-22208. https://doi.org/10.1007/s11356-019-05492-5 PMid:31148000
Viarengo A., Ponzano E., Dondero F., et al. 1997. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antartic molluscs. Mar. Environ. Res. 44: 69-84. https://doi.org/10.1016/S0141-1136(96)00103-1
Yilmaz B., Yildizbayrak N., Aydin Y., et al. 2017. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum. Exp. Toxicol. 36: 1225-1235. https://doi.org/10.1177/0960327116686818 PMid:28067054
Zamora R., Delgado R.M., Hidalgo F.J. 2010. Model reactions of acrylamide with selected amino compounds. J. Agric. Food. Chem. 58: 1708-1713. https://doi.org/10.1021/jf903378x PMid:20078067
Zhou Z., Sun X., Kang Y.J. 2002. Metallothionein protection against alcoholic liver injury through inhibition of oxidative stress. Exp. Biol. Med. 227: 214-222. https://doi.org/10.1177/153537020222700310 PMid:11856821
Zorita L., Ortiz-Zarragoitia M., Solo M., et al. 2006. Biomarkers in mussels from a copper site gradient (Visnes, Norway): an integrated biochemical, histochemical and histological study. Aquat. Toxicol. 78: 109-116. https://doi.org/10.1016/j.aquatox.2006.02.032 PMid:16635531
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.