Scientia Marina, Vol 84, No 1 (2020)

A quantitative assessment of the diel influence on the cryptobenthic fish assemblage of the shallow Mediterranean infralittoral zone


https://doi.org/10.3989/scimar.04994.21A

Igor Glavičić
Department of Marine Studies, University of Split, Croatia
orcid https://orcid.org/0000-0001-6358-5315

Marcelo Kovačić
Natural History Museum Rijeka, Croatia
orcid https://orcid.org/0000-0002-4049-9366

Alen Soldo
Department of Marine Studies, University of Split, Croatia
orcid https://orcid.org/0000-0002-0748-7558

Ulrich Schliewen
Bavarian Natural History Collections, The Bavarian State Collection of Zoology, Department of Ichthyology, Germany
orcid https://orcid.org/0000-0003-0187-4319

Abstract


Cryptobenthic fishes are an underestimated and probably important component of coastal marine ecosystems that are usually overlooked by standard methods for collecting and studying benthic fishes. Studies focusing on cryptobenthic fishes have been rare and all have been based on samples taken during daytime. The present study tested the difference in epibenthic and cryptobenthic fish composition, diel differences in cryptobenthic fish assemblage and diel shifts of infralittoral fish species between hidden and open bottom spaces. It also looked for the significant habitat variables structuring the cryptobenthic fish assemblage. The daylight, sunset and night samples of epibenthic and cryptobenthic fish assemblages were collected from 78 squares of 1 m2 shallow water plots (0.5 to 3 m) on Brač island in the eastern Adriatic. The study recorded 27 species, among which the family Gobiidae dominated fish diversity with 14 species. Cryptobenthic specimens highly outnumbered epibenthic specimens, with a ratio of 7.5 to 1. Species composition of cryptobenthic and epibenthic fish assemblages differed significantly. No diel variation in composition, species richness or abundance of the cryptobenthic fish assemblage was detected. Occurrence frequencies in hidden and open bottom spaces of ambivalent species did not change significantly between times of day, so no dial switches between open and hidden places were apparent. In combination, these results suggest that the cryptobenthic fish assemblage has diel stability and is mostly composed of permanent inhabitants of hidden spaces with domination of miniature gobies. Significant habitat variables for species occurrence were the presence of multiple layers, bottom inclination and the presence of cobbles, while depth also had a large but not significant effect.

Keywords


cryptic fishes; diel influence; multivariate analysis; habitat utilization; benthos; littoral zone

Full Text:


HTML PDF XML

References


Abel E.F. 1961. Freiwasserstudien über das Fortpflanzungsverhalten des Mönchfisches Chromis chromis Linne, einem Vertreter der Pomacentriden im Mittelmeer. Z. Tierpsychol. 18: 441-449. https://doi.org/10.1111/j.1439-0310.1961.tb00235.x

Ackerman J.L., Bellwood D.R. 2000. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar. Ecol. Prog. Ser. 206: 227-237. https://doi.org/10.3354/meps206227

Ahmadia G.N., Pezold F.L., Smith D.J. 2012. Cryptobenthic fish biodiversity and microhabitat use in healthy and degraded coral reefs in SE Sulawesi, Indonesia. Mar. Biodivers. 42: 433-442. https://doi.org/10.1007/s12526-012-0118-3

Azzurro E., Pais A., Consoli P., et al. 2007. Evaluating day-night changes in shallow Mediterranean rocky reef fish assemblages by visual census. Mar. Biol. 151: 2245-2253. https://doi.org/10.1007/s00227-007-0661-9

Azzurro E., Aguzzi J., Maynou F., et al. 2013. Diel rhythms in shallow Mediterranean rocky-reef fishes: a chronobiological approach with the help of trained volunteers. J. Mar. Biol. Ass. UK 932: 461-470. https://doi.org/10.1017/S0025315412001166

Beldade R., Gonçavles E.J. 2007. An interference visual census technique applied to cryptobenthic fish assemblages. Vie Milieu 57: 61-65.

Brandl S.J., Goatley C.H.R., Bellwood D.R., et al. 2018. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93: 1846-1873. https://doi.org/10.1111/brv.12423 PMid:29736999

Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Depczynski M., Bellwood D.R. 2003. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar. Ecol. Prog. Ser. 256: 183-191. https://doi.org/10.3354/meps256183

Dulčić J., Fencil M., Mati?-Skoko S., et al. 2004. Diel catch variations in a shallow-water fish assemblage at Du?e-Glava, eastern Adriatic Croatian coast. J. Mar. Biol. Ass. UK 84: 659-664. https://doi.org/10.1017/S0025315404009701h

Dulčić J., Mati?-Skoko S., Kraljevi? M., et al. 2005. Seasonality of a fish assemblage in shallow waters of Du?e-Glava, eastern middle Adriatic. Cybium 29: 57-63.

Glavičić I., Paliska D., Soldo A., et al. 2016. A quantitative assessment of the cryptobenthic fish assemblage at deep littoral cliffs in the Mediterranean. Sci. Mar. 80: 329-337. https://doi.org/10.3989/scimar.04307.23A

Goatley C.H.R., González-Cabello A., Bellwood D.R. 2016. Reef-scale partitioning of cryptobenthic fish assemblages across the Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 544: 271-280. https://doi.org/10.3354/meps11614

Goatley C.H.R., Brandl S.J. 2017. Crypthobenthic reef fishes. Curr. Biol. 27: R431-R435. https://doi.org/10.1016/j.cub.2017.03.051 PMid:28586677

Harmelin J.-G. 1987. Structure et variabilité de l'ichtyofaune d'une zone rocheuse protégé en Méditerraneé (Pare national de Port- Cros, France). PSZN I: Mar. Ecol. 8: 263-284. https://doi.org/10.1111/j.1439-0485.1987.tb00188.x

Hobson E.S. 1965. Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia 1965: 291-302. https://doi.org/10.2307/1440790

Kovačić M., Patzner R.A., Schliewen U.K. 2012. A first quantitative assessment of the ecology of cryptobenthic fishes in the Mediterranean Sea. Mar. Biol. 159: 2731-2742. https://doi.org/10.1007/s00227-012-2030-6

McDonald J.H. 2014. Handbook of Biological Statistics. Sparky House Publishing, Baltimore, Maryland, 296 pp.

Prochazka K. 1998. Spatial and trophic partitioning in cryptic fish communities of shallow subtidal reefs in False Bay, South Africa. Environ. Biol. Fish. 51: 201-220.

Richter C., Wunsch M., Rasheed M., et al. 2001. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413: 725-730. https://doi.org/10.1038/35099547 PMid:11607030

Scheffers S.R., de Goeij J., van Duyl F.C., et al. 2003. The cave-profiler: a simple tool to describe the 3-D structure of inaccessible coral reef cavities. Coral Reefs 22: 49-53. https://doi.org/10.1007/s00338-003-0285-6

Smith-Vaniz W.F., Jelks H.L., Rocha L.A. 2006. Relevance of cryptic fishes in the biodiversity assessments: A case study at Buck Island Reef National Monument, St. Croix. Bull. Mar. Sci. 79: 17-48.

Šmilauer P., Lep? J. 2014. Multivariate analysis of ecological data using CANOCO 5. Cambridge Univ. Press, Cambridge, 362 pp. https://doi.org/10.1017/CBO9781139627061 PMCid:PMC3916394

Ter Braak C.J.F., ?milauer P. 2012. Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, USA, 496 pp.

Thiriet P.D., Di Franco A., Chemineée A., et al. 2016. Abundance and Diversity of Crypto- and Necto-Benthic Coastal Fish Are Higher in Marine Forests than in Structurally Less Complex Macroalgal Assemblages. PLoS ONE 11: e0164121. https://doi.org/10.1371/journal.pone.0164121 PMid:27760168 PMCid:PMC5070871

Tornabene L., Ahmadia G.N., Berumen M.L., et al. 2013. Evolution of microhabitat association and morphology in a diverse group of cryptobenthic coral reef fishes (Teleostei: Gobiidae: Eviota). Mol. Phylogenet. Evol. 66: 391-400. https://doi.org/10.1016/j.ympev.2012.10.014 PMid:23099149

Underwood A.J. 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511806407

Willis T.J. 2001. Visual census methods underestimate density and diversity of cryptic reef fishes. J. Fish Biol. 59: 1408-1411. https://doi.org/10.1111/j.1095-8649.2001.tb00202.x

Willis T.J., Anderson M.J. 2003. Structure of cryptic reef fish assemblages: relationships with habitat characteristics and predator density. Mar. Ecol. Prog. Ser. 257: 209-221. https://doi.org/10.3354/meps257209




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es