Scientia Marina, Vol 83, No S1 (2019)

Modelling spatio-temporal patterns of fish community size structure across the northern Mediterranean Sea: an analysis combining MEDITS survey data with environmental and anthropogenic drivers


https://doi.org/10.3989/scimar.05015.06A

Isabella Bitetto
COISPA Tecnologia & Ricerca, Italy
orcid https://orcid.org/0000-0002-8497-1642

Giovanni Romagnoni
COISPA Tecnologia & Ricerca - Centre for Ecological and Evolutionary Synthesis (CEES), Dept. of Biosciences, University of Oslo, Italy
orcid https://orcid.org/0000-0002-2208-3017

Angeliki Adamidou
FRI, Greece
orcid https://orcid.org/0000-0002-9958-3407

Gregoire Certain
UMR MARBEC IFREMER-LHM, France
orcid https://orcid.org/0000-0002-5242-5268

Manfredi Di Lorenzo
Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Italy
orcid https://orcid.org/0000-0003-3786-5772

Marilena Donnaloia
COISPA Tecnologia & Ricerca, Italy
orcid https://orcid.org/0000-0001-6707-0503

Giuseppe Lembo
COISPA Tecnologia & Ricerca, Italy
orcid https://orcid.org/0000-0002-9899-6189

Porzia Maiorano
Dipartimento di Biologia, Bari University of Aldo Moro, Italy
orcid https://orcid.org/0000-0001-5737-3025

Giacomo Milisenda
SZN (Stazione zoologica Anton Dohrn), Dipartimento di ecologia marina integrata, Italy
orcid https://orcid.org/0000-0003-1334-9749

Claudia Musumeci
CIBM, Italy
orcid https://orcid.org/0000-0001-9778-6254

Francesc Ordines
Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Spain
orcid https://orcid.org/0000-0002-2456-2214

Paola Pesci
Department of Life and Environmental Sciences, University of Cagliari, Italy
orcid https://orcid.org/0000-0002-9066-8076

Panagiota Peristeraki
Hellenic Center of Marine Research, Greece
orcid https://orcid.org/0000-0002-8608-078X

Ana Pesic
University of Montenegro - Institute of Marine Biology, Montenegro
orcid https://orcid.org/0000-0002-8669-6744

Maria Teresa Spedicato
COISPA Tecnologia & Ricerca, Italy
orcid https://orcid.org/0000-0001-9939-9426

Abstract


The state of marine systems subject to natural or anthropogenic impacts can be generally summarized by suites of ecological indicators carefully selected to avoid redundancy. Length-based indicators capture the status of fish community structure, fulfilling the Marine Strategy Framework Directive (MSFD) requirement for Descriptor 3 (status of commercial fish species). Although the MSFD recommends the development of regional indicators, a comparison among alternative length-based indicators is so far missing for the Mediterranean Sea. Using principal component analysis and dynamic factor analysis, we identified the most effective subset of length-based indicators, whether or not based on maximum length. Indicator trends and time series of fishing effort and environmental variables are also compared in order to highlight the individual and combined capability of indicators to track system changes across geographical sub-areas. Two indicators, typical length and mean maximum length, constitute the smallest set of non-redundant indicators, capturing together 87.45% of variability. Only in combination can these indicators disentangle changes in the fish community composition from modifications of size structure. Our study supports the inclusion of typical length among the regional MSFD Descriptor 3 indicators for the Mediterranean Sea. Finally, we show dissimilarity between the western and eastern-central Mediterranean, suggesting that there are sub-regional differences in stressors and community responses.

Keywords


demersal fish community; size structure indicators; geographical sub-area; Marine Strategy Framework Directive; dynamic factor analysis; redundancy analysis

Full Text:


HTML PDF XML

References


Anonymous. 2017. MEDITS Handbook. Version n. 9, MEDITS Working Group: 106 pp. http://www.sibm.it/MEDITS%202011/principaledownload.htm

Blanchard J.L., Coll M., Trenkel V.M., et al. 2010. Trend analysis of indicators: a comparison of recent changes in the status of marine ecosystems around the world. ICES J. Mar. Sci. 67: 732-744. https://doi.org/10.1093/icesjms/fsp282

Brind'Amour A., Rochet M.J., Ordines F., et al. 2016. Environmental drivers explain regional variation of changes in fish and invertebrate functional groups across the Mediterranean Sea from 1994 to 2012. Mar. Ecol. Prog. Ser. 562: 19-35. https://doi.org/10.3354/meps11912

Burnham K.P., Anderson D.R. 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. 2nd ed.. Springer, New York.

Cheung W.W.L., Watson R., Pauly D. 2013. Signature of ocean warming in global fisheries catch. Nature 497: 365-368. https://doi.org/10.1038/nature12156 PMid:23676754

Cury P.M., Christensen V. 2005. Quantitative ecosystem indicators for fisheries management. ICES J. Mar. Sci. 62: 307-310. https://doi.org/10.1016/j.icesjms.2005.02.003

Dupont C., Barsoumian S., Moreira G., et al. 2018. Article 16 Technical Assessment of the MSFD 2015 reporting on Programme of Measures. Italy Report.

European Commission. 2010. EU Commission Decision of 1st September 2010 on criteria and methodological standards on good environmental status of marine waters (2010/477/EU). Off. J. Eur. Union, L232: 12-24.

European Union. 2013. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy.

Fulton E.A., Smith A.D.M., Punt A.E. 2005. Which ecological indicators can robustly detect effects of fishing? ICES J. Mar. Sci. 62: 540-551. https://doi.org/10.1016/j.icesjms.2004.12.012

Greenstreet S.P.R., Rossberg A.G., Fox C.J., et al. 2012a. Demersal fish biodiversity: species-level indicators and trends-based targets for the Marine Strategy Framework Directive. ICES J. Mar. Sci. 69: 1789-1801. https://doi.org/10.1093/icesjms/fss148

Greenstreet S.P.R., Fraser H.M., Rogers S.I., et al. 2012b. Redundancy in metrics describing the composition, structure, and functioning of the North Sea demersal fish community. ICES J. Mar. Sci. 69: 8-22. https://doi.org/10.1093/icesjms/fsr188

Harrell F.E. Jr. 2006. The Hmisc package. https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf

Holmes E., Ward E., Wills K. 2018. MARSS: multivariate autoregressive state-space modeling. R package version 3.10.10. http://CRAN.R-project.org/package=MARSS

Houle J.E., Farnsworth K.D., Rossberg A.G., et al. 2012. Assessing the sensitivity and specificity of fish community indicators to management action. Can. J. Fish. Aquat. Sci. 69: 1065-1079. https://doi.org/10.1139/f2012-044

ICES. 2012. Report of the Working Group on the Ecosystem Effects of Fishing Activities (WGECO), 11-18 April, Copenhagen, Denmark. ICES CM 2012/ACOM:26. 192 pp.

ICES. 2014. Report of the Working Group on the Ecosystem Effects of Fishing Activties (WGECO), 8-15 April 2014, Copenhagen, Denmark. ICES CM 2014/ACOM:26. 174 pp.

ICES. 2018. Report of the Working Group on Ecosystem Effects of Fishing Activities (WGECO), 12-19 April 2018, San Pedro del Pinatar, Spain. ICES CM 2018/ACOM:27. 69 pp.

Kaiser H.F. 1974. An index of factor simplicity. Psychometrika 39: 31-36. https://doi.org/10.1007/BF02291575

Lê S., Josse J., Husson F. 2008. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 25: 1-18. https://doi.org/10.18637/jss.v025.i01

Lynam C.P., Rossberg A.G. 2017. New univariate characterization of fish community size structure improves precision beyond the Large Fish Indicator. arXiv:1707.06569.

McLachlan G., Peel D. 2000. Finite Mixture Models. John Wiley & Sons. Hoboken, New Jersey. https://doi.org/10.1002/0471721182

Methratta E.T., Link J.S. 2006. Evaluation of quantitative indicators for marine fish communities. Ecol. Ind. 6: 575-588. https://doi.org/10.1016/j.ecolind.2005.08.022

OSPAR. 2017. Intermediate Assessment. Fish and food web. Last accessed: 12/07/2019. https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017/biodiversity-status/ fish-and-food-webs/

Pielou E. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13: 131-144. https://doi.org/10.1016/0022-5193(66)90013-0

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rochet M.J., Trenkel V.M. 2003. Which community indicators can measure the impact of fishing? A review and proposals. Can. J. Fish. Aquat. Sci. 60: 86-99. https://doi.org/10.1139/f02-164

Rochet M.J., Trenkel V.M., Carpentier A., et al. 2010. Do changes in environmental and fishing pressures impact marine communities? An empirical assessment. J. Appl. Ecol. 47: 741-750. https://doi.org/10.1111/j.1365-2664.2010.01841.x

Shephard S., Reid D.G., Greenstreet S.P.R. 2011. Interpreting the large fish indicator for the Celtic Sea. ICES J. Mar. Sci. 68: 1963-1972. https://doi.org/10.1093/icesjms/fsr114

Shin Y.-J., Shannon L.J. 2010. Using indicators for evaluating, comparing, and communicating the ecological status of exploited marine ecosystems. 1. The IndiSeas project. ICES J. Mar. Sci. 67: 686-691. https://doi.org/10.1093/icesjms/fsp273

Shin Y-J., Rochet M.J., Jennings S., et al. 2005. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J. Mar. Sci. 62: 384-396. https://doi.org/10.1016/j.icesjms.2005.01.004

Shin Y.J., Houle J.E., Akoglu E., et al. 2018. The specificity of marine ecological indicators to fishing in the face of environmental change: A multi-model evaluation. Ecol. Ind. 89: 317-326. https://doi.org/10.1016/j.ecolind.2018.01.010

Souplet A. 1996. Calculation of abundance indices and length frequencies in the MEDITS survey. In: Bertrand J.A. et al. (eds), Campagne internationale du chalutage démersal en Méditerraneé. Campagne 1995. EU Final Report, Vol. III.

Spedicato M.T., Bitetto I., Carbonara P., et al. 2014. Methodological support for exploring the LFI: "proportion of large fish - indicator" properties for interpreting the changes in the fish community of the South Adriatic area (GSA18). In: First MedSuit Regional Workshop on indicators and targets to ensure GES of commercially exploited marine populations in the GFCM area. FAO HQs, Rome, Italy, 6-7 November 2014.

Spedicato M.T., Massutí E., Merigot B., et al. 2019. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83S1: 9-20. https://doi.org/10.3989/scimar.04915.11X

Vasilakopoulos P., Raitsos D.E., Tzanatos E. 2017. Resilience and regime shifts in a marine biodiversity hotspot. Sci. Rep. 7: 13647. https://doi.org/10.1038/s41598-017-13852-9 PMid:29057946 PMCid:PMC5651905

Winemiller K.O., Rose K.A. 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Can. J. Fish. Aquat. Sci. 49: 2196-2218. https://doi.org/10.1139/f92-242

Yong A.G., Pearse S. 2013. A Beginner's Guide to Factor Analysis: Focusing on Exploratory Factor Analysis. TQMP 9: 79-94. https://doi.org/10.20982/tqmp.09.2.p079

Zuur A.F., Tuck I.D., Bailey N. 2003. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60: 542-552. https://doi.org/10.1139/f03-030




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es