Scientia Marina, Vol 70, No 1 (2006)

Analysis of wind events in a coastal area: a tool for assessing turbulence variability for studies on plankton


https://doi.org/10.3989/scimar.2006.70n19

Òscar Guadayol
Institut de Ciències del Mar, CMIMA (CSIC), Barcelona, Spain

Francesc Peters
Institut de Ciències del Mar, CMIMA (CSIC), Barcelona, Spain

Abstract


Turbulence at different scales, from generation to dissipation, influences planktonic communities. Many experimental studies have recently been done to determine the effects of small-scale turbulence on plankton, but it is difficult to state the relevance of the findings since there is little unbiased information on turbulence variability in the sea. In this study, we use wind velocity data series from several meteorological stations located along the Catalan coast to estimate the spatial and temporal variability of small-scale turbulence in the upper ocean. Using a peaks-over-threshold approach, we develop a statistical model to assess the frequency of wind events as a function of their persistence and intensity. Finally, the wind speed data series are converted into turbulent energy dissipation rate estimates at 1 m depth to determine the general distribution of turbulence on the Catalan coast. Geographical variability is larger than seasonal variability in frequency and persistence of wind events, owing to differences in local relief. These statistical models developed for wind events combined with empirical relationships between wind and turbulence, are tools for estimating the occurrence and persistence of turbulent events at a given location and season. They serve to put into context the past, present and future studies of the effects of turbulence on coastal planktonic organisms and processes.

Keywords


wind events; small-scale turbulence; plankton; peaks-over-threshold approach

Full Text:


PDF

References


Csanady, G.T. – 1989. Energy dissipation and upwelling in a western boundary current. J. Phys. Oceanogr., 19: 462-473. doi:10.1175/1520-0485(1989)019<0462:EDAUIA>2.0.CO;2

D’Asaro, E.A. and G.T. Dairiki. – 1997. Turbulence intensity measurements in a wind-driven mixed layer. J. Phys. Oceanogr., 27: 2009-2022. doi:10.1175/1520-0485(1997)027<2009:TIMIAW>2.0.CO;2

Dewey, R.K. and J.N. Moum. – 1990. Enhancement of fronts by vertical mixing. J. Geophys. Res., 95(C6): 9433-9445. doi:10.1029/JC095iC06p09433

Dietze H., A. Oschlies and P. Kähler. – 2004. Internal-waveinduced and double-diffusive nutrient fluxes to the nutrientconsuming surface layer in the oligotrophic subtropical North Atlantic. Oc. Dyn., 54:1-7. doi:10.1007/s10236-003-0060-9

Estrada, M. and E. Berdalet. – 1998. Effects of turbulence on phytoplankton. In: D.M. Anderson, A.D. Cembella and G.M. Hallegraeff (eds.), Physiological Ecology of Harmful Algal Blooms, pp. 601-618. NATO ASI Series, G41.

Frisch, U. and D. Sornette. – 1997. Extreme deviations and applications. J. Phys. I France, 7: 1155-1171.

García, M.A. and A. Ballester. – 1984. Notas acerca de la meteorología y la circulación local en la región del delta del Ebro (1980-1981). Invest. Pesq., 48(3): 469-493.

Gargett, A.E. – 1989. Ocean Turbulence. Annu. Rev. Fluid. Mech., 21: 419-451. doi:10.1146/annurev.fl.21.010189.002223

Gargett, A.E. and P. Donaghay - 2003. Turbulence mixing and biophysical interactions. In: Regional Cabled Observatory Network (of Networks), Report of the Cabled Regional Observatory Workshop.

Gemmrich, J.R. and D.M. Farmer. – 1999. Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr., 29: 480-499. doi:10.1175/1520-0485(1999)029<0480:NSTATS>2.0.CO;2

Gemmrich, J.R. and D.M. Farmer. – 2004. Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34: 1067-1086. doi:10.1175/1520-0485(2004)034<1067:NTITPO>2.0.CO;2

Holligan, P.M. – 1981. Biological implications of fronts on the Northwest European continental shelf. Phil. Trans. R. Soc. Lond. A, 302: 547-562. doi:10.1098/rsta.1981.0182

Holman, R. – 1995. Nearshore processes. Rev. Geophys., 33(S1): 1237-1248. doi:10.1029/95RG00297

Karp-Boss L., E. Boss and P.A. Jumars. – 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. Annu. Rev., 34: 71-107.

Kiørboe, T. – 1997. Small-scale turbulence, marine snow formation, and planktivorous feeding. In: C. Marrasé E. Saiz and J.M. Redondo (eds.), Lectures on Plankton and Turbulence, Sci. Mar., 61(Suppl. 1): 141-158.

Laherrère, J. and D. Sornette. – 1998. Stretched exponential distributions in nature and economy: “fat tails’’ with characteristic scales. Eur. Phys. J. B, 2: 525-539. doi:10.1007/s100510050276

Lazier, J.R.N. and K.H. Mann. – 1989. Turbulence and the diffusive layers around small organisms. Deep-Sea Res., 36: 1721-1733. doi:10.1016/0198-0149(89)90068-X

Maar, M., L. Arin, R. Simó, M.M. Sala, F Peters and C. Marrasé. – 2002. Combined effects of nutrients and small-scale turbulence in a microcosm experiment. II. Dynamics of organic matter and phosphorus. Aquat. Microb. Ecol., 29: 63-72. doi:10.3354/ame029063

MacKenzie, B.R. and T. Kiørboe. – 2000. Larval fish feeding and turbulence: A case for the downside. Limnol. Oceanogr., 45(1): 1-10.

MacKenzie, B.R. and W.C. Leggett. – 1993. Wind-based models for estimating the dissipation rates of turbulent energy in aquatic environments: empirical comparisons Mar. Ecol. Prog. Ser., 94: 207-216. doi:10.3354/meps094207

Margalef, R. – 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta., 1: 493-509.

Marrasé, C., J.H. Costello, T. Granata and J.R. Strickler. – 1990. Grazing in a turbulent environment: Energy dissipation, encounter rates, and efficacy of feeding currents in Centropages hamatus. Proc. Natl. Acad. Sci. USA, 87: 1653- 1657. doi:10.1073/pnas.87.5.1653

McWilliams, J.C., P.P. Sullivan, and C Moeng. – 1997. Langmuir turbulence in the ocean. J. Fluid Mech., 334: 1-30. doi:10.1017/S0022112096004375

Motulsky, H. – 2003. Intuitive biostatistics. Oxford University Press, New York.

Oakey, N.S. and J.A. Elliott. – 1982. Dissipation within the surface mixed layer, J. phys. Oceanogr., 12: 171-185. doi:10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2

Osborn, T.R. and W.R. Crawford. – 1980. An airfoil probe for measuring turbulent velocity fluctuations in water. In: L. Hasse, F. Dobson and R. Davis (eds.), Instruments and Methods of airsea interaction, pp. 369-386 . Plenum Press.New York.

Peters, F. and C. Marrasé. – 2000. Effects of turbulence on plankton: an overview of experimental evidence and some theoretical considerations. Mar. Ecol. Prog. Ser., 205: 291-306. doi:10.3354/meps205291

Peters, F., C. Marrasé, J.M. Gasol, M.M. Sala and L. Arin. – 1998. Effects of turbulence on bacterial growth mediated through food web interactions. Mar. Ecol. Prog. Ser., 172: 293-303. doi:10.3354/meps172293

Peters, F. and J.M. Redondo. – 1997. Turbulence generation and measurement: application to studies on plankton. In: C. Marrasé, E. Saiz and J.M. Redondo (eds.), Lectures on Plankton and Turbulence, Sci. Mar., 61(Suppl. 1): 205-228.

Pingree, R.D., G.T. Mardell and D.E. Cartwright. – 1981. Slope turbulence, internal waves and phytoplankton growth at the Celtic Sea shelf-break (and discussion). Phil. Trans. R. Soc. Lond. A, 302: 663-682. doi:10.1098/rsta.1981.0191

Reiter, E.R. – 1975. General Description of the Meteorological Processes. Part 1, Handbook for Forecasters in the Mediterranean: Weather Phenomena of the Mediterranean Basin. Nav. Environ. Predict. Res. Facil. Tech. Nav. Posgrad. Sch., Monterey, California.

Rothschild, B.J. and T.R. Osborn. – 1988. Small-scale turbulence and plankton contact rates. J. Plankton Res., 10: 465-474. doi:10.1093/plankt/10.3.465

Ruiz, J. – 1996. The role of turbulence in the sedimentation loss of pelagic aggregates from the mixed layer. J. Mar. Res., 54: 385-406. doi:10.1357/0022240963213367

Ruiz, J., D. Macías and F. Peters. – 2004. Turbulence increases the average settling velocity of phytoplankton cells. Proc. Natl. Acad. Sci. USA, 101(51): 17720-17724. doi:10.1073/pnas.0401539101

Saiz, E. and T. Kiørboe. – 1995. Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar. Ecol. Prog. Ser., 122: 147-158. doi:10.3354/meps122147

Sherwin, T.J., M.E. Inall and R. Torres. – 2002. The seasonal and spatial variability of small-scale turbulence at the Iberian margin. J. Mar. Res., 60 (1): 73-100. doi:10.1357/002224002762341258

St.Laurent, L.C., H. L. Simmons, and S.R. Jayne - 2002. Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29(23): 1-4. doi:10.1029/2002GL015633

Stips. A., H. Burchard, K. Bolding, H. Prandke, A. Simon, A. Wüest. – 2005. Measurement and simulation of viscous dissipation in the wave affected surface layer. Deep-Sea Res. II, 52: 1133-1155.

Stull, R.B. – 1988. An introduction to boundary layer meteorology. Atmospheric sciences library. Vol. 13. Kluwer Academic Publishers. Dordrecht, Netherland.

Sun, H. and E. Kunze. – 1999. Internal wave-wave interactions. Part II: Spectral energy transfer and turbulence production. J. Phys. Oceanogr., 29: 2905-2919. doi:10.1175/1520-0485(1999)029<2905:IWWIPI>2.0.CO;2

Terray, E.A., M.A. Donelan, Y.C. Agrawal, W.M. Drennan, K.K. Kahma, A.J. Williams III, P.A. Hwang and S.A. Kitaigorodskii. – 1996. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26: 792-807. doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2

Troen, I. and E.L. Petersen. – 1989. European Wind Atlas. Risø National Laboratory, Risø, Denmark.

Turner, J.S. – 1973. Buoyancy effects in fluids. Cambridge University Press.

Yen, J., M.J. Weissburg and H. Doall. – 1998. The fluid physics of signal reception by mate-tracking copepods. Phil. Trans. R. Soc. Lond., 353: 787-804. doi:10.1098/rstb.1998.0243 PMCid:1692257




Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es