Scientia Marina, Vol 81, No 3 (2017)

Essential habitat for sardine juveniles in Iberian waters


https://doi.org/10.3989/scimar.04554.07A

Sílvia Rodríguez-Climent
Instituto Português do Mar e da Atmosfera (IPMA) , Portugal
orcid http://orcid.org/0000-0001-7760-0459

Maria Manuel Angélico
Instituto Português do Mar e da Atmosfera (IPMA) , Portugal
orcid http://orcid.org/0000-0003-1385-5131

Vítor Marques
Instituto Português do Mar e da Atmosfera (IPMA) , Portugal
orcid http://orcid.org/0000-0003-4676-595X

Paulo Oliveira
Instituto Português do Mar e da Atmosfera (IPMA) , Portugal
orcid http://orcid.org/0000-0001-6838-7377

Laura Wise
Instituto Português do Mar e da Atmosfera (IPMA) , Portugal
orcid http://orcid.org/0000-0002-7819-7371

Alexandra Silva
Instituto Português do Mar e da Atmosfera (IPMA) , Portugal
orcid http://orcid.org/0000-0002-2950-1429

Abstract


In a period when the Iberian sardine stock abundance is at its historical minimum, knowledge of the sardine juvenile’s distribution is crucial for the development of fishery management strategies. Generalized additive models were used to relate juvenile sardine presence with geographical variables and spawning grounds (egg abundance) and to model juvenile abundance with the concurrent environmental conditions. Three core areas of juvenile distribution were identified: the Northern Portuguese shelf (centred off Aveiro), the coastal region in the vicinity of the Tagus estuary, and the eastern Gulf of Cadiz. Spatial differences in the relationship between juvenile presence and egg abundances suggest that essential juvenile habitat might partially differ from the prevailing spawning grounds. Models also depicted significant relationships between juvenile abundance, temperature and geographical variables in combination with salinity in the west and with zooplankton in the south. Results indicate that the sardine juvenile distribution along the Iberian Peninsula waters are an outcome of a combination of dynamic processes occurring early in life, such as egg and larva retention, reduced mortality and favourable feeding grounds for both larvae and juveniles.

Keywords


Portuguese coast; Gulf of Cadiz; acoustic survey; fish habitat; Sardina pilchardus; juveniles; fisheries management

Full Text:


HTML PDF XML

References


Bellido J.M., Brown A.M., Valavanis V.D., et al. 2008. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Hydrobiology 612: 171-184. https://doi.org/10.1007/s10750-008-9481-2

Bergeron J.P. 2004. Contrasting years in the Gironde estuary (Bay of Biscay, NE Atlantic) springtime outflow and consequences for zooplankton pyruvate kinase activity and the nutritional condition of anchovy larvae: An early view. ICES J. Mar. Sci. 61: 928-932. https://doi.org/10.1016/j.icesjms.2004.06.019

Bernal M., Stratoudakis Y., Coombs S., et al. 2007. Sardine spawning off the European Atlantic coast: Characterization of and spatio-temporal variability in spawning habitat. Prog. Oceanogr. 74: 210-227. https://doi.org/10.1016/j.pocean.2007.04.018

Cotano U., Irigoien X., Etxebeste E., et al. 2008. Distribution, growth and survival of anchovy larvae (Engraulis encrasicolus L.) in relation to hydrodynamic and trophic environment in the Bay of Biscay. J. Plankton Res. 30: 467-481. https://doi.org/10.1093/plankt/fbn011

De Castro M., Gómez-Gesteira M., Álvarez I., et al. 2011. Atmospheric modes influence on Iberian Poleward Current variability. Cont. Shelf Res. 31: 425-432. https://doi.org/10.1016/j.csr.2010.03.004

Doray M. 2013. EchoR package tutorial. 10 pp.

Edgar G.J., Russ G.R., Babcock R.C. 2007. Marine protected areas. In: Connell B.M., Sean D. (eds) Marine Ecology. Oxford Univ. Press, pp. 533-555.

Foote K., Knudsen H., Vestnes G., et al. 1987. Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Coop Res Rep. No 144. 81 pp.

Garrido S., van der Lingen C. 2014. Feeding Biology and Ecology. In: Ganias K. (eds), Biology and Ecology of Sardines and Anchovies. Boca Raton, CRC Press, pp. 190-242. https://doi.org/10.1201/b16682-7

Giannoulaki M., Pyrounaki M.M., Liorzou B., et al. 2011. Habitat suitability modelling for sardine juveniles (Sardina pilchardus) in the Mediterranean Sea. Fish Oceanogr. 20: 367-382. https://doi.org/10.1111/j.1365-2419.2011.00590.x

ICES. 2016. Second Interim report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VII, VIII and IX (WGACEGG), 16-20 November 2015. ICES CM 2015/SSGIEOM:31.

Katara I. 2014. Recruitment Variability. In: Ganias K. (eds), Biology and Ecology of Sardines and Anchovies. Boca Raton, CRC Press, pp. 242-285. https://doi.org/10.1201/b16682-9

Koutsikopoulos C., Lacroix N. 1992. Distribution and abundance of sole (Solea solea (L.)) eggs and larvae in the Bay of Biscay between 1986 and 1989. Neth. J. Sea Res. 29: 81-91. https://doi.org/10.1016/0077-7579(92)90009-4

Levin P.S., Stunz G.W. 2005. Habitat triage for exploited fishes: Can we identify essential 'Essential Fish Habitat?' Est. Coast. Shelf Sci. 64: 70-78. https://doi.org/10.1016/j.ecss.2005.02.007

MacCall A. 1990. Dynamic geography of marine fish populations.1st edn. Washington University Press, 153 pp.

Marques V. 2005. Campanhas Acústicas Portuguesas Dirigidas a Sardinha (Sardina pilchardus, Walb.) (1984-2003). Dissertação para provas de acesso à categoriade Investigador Auxiliar. Instituto nacional de Investigação das Pescas, 262 pp.

McLusky D.S. 1989. The Estuarine Ecosystem. 2nd ed. Chapman & Hall. 215 pp.

Parrish R.H., Serra R., Grant W.S. 1989. The Monotypic Sardines, Sardina and Sardinops: Their Taxonomy, Distribution, Stock Structure, and Zoogeography. Can. J. Fish. Aquat. Sci. 46: 2019-2036. https://doi.org/10.1139/f89-251

Peliz A.J., Fiúza A.F.G. 1999. Temporal and spatial variability of CZCS-derived phytoplankton pigment concentrations off the western Iberian Peninsula. Int. J. Remote Sens. 20: 1363-1403. https://doi.org/10.1080/014311699212786

Peliz A., Rosa T.L., Santos M.P., et al. 2002. Fronts, jets, and counter-flows in the Western Iberian Upwelling system. J. Mar. Syst. 35: 61-77. https://doi.org/10.1016/S0924-7963(02)00076-3

Petitgas P., Masse J., Bourriau P., et al. 2006. Hydro-plankton characteristics and their relationship with sardine and anchovy distributions on the French shelf of the Bay of Biscay. Sci. Mar. 70S1: 161-172.

R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing, Vienna, Austria, ISBN3-900051-07-0. http://www.R-project.org

Relvas P., Barton E.D. 2002. Mesoscale patterns in the Cape São Vicente (Iberian Peninsula) upwelling region. J. Geophys. Res. B. 107(C10): 3164. https://doi.org/10.1029/2000JC000456

Ré P., Silva C., Cunha E., et al. 1990. Sardine spawning off Portugal. Bol. Inst. Nac. Invest. Pescas 15: 31-44.

Santos A.M.P., Peliz A., Dubert J., et al. 2004. Impact of a winter upwelling event on the distribution and transport of sardine (Sardina pilchardus) eggs and larvae off western Iberia: A retention mechanism. Cont. Shelf Res. 24: 149-165. https://doi.org/10.1016/j.csr.2003.10.004

Santos A.M.P., Chícharo A., Dos Santos A., et al. 2007. Physical– biological interactions in the life history of small pelagic fish in the Western Iberia Upwelling Ecosystem. Prog. Oceanogr. 74: 192-209. https://doi.org/10.1016/j.pocean.2007.04.008

Silva A., Santos M., Caneco B., et al. 2006. Temporal and geographic variability of sardine maturity at length in the northeastern Atlantic and the western Mediterranean. ICES J. Mar. Sci. 63: 663-676. https://doi.org/10.1016/j.icesjms.2006.01.005

Silva A., Skagen D.W., Uriarte A., et al. 2009. Geographic variability of sardine dynamics in the Iberian Biscay region. ICES J. Mar. Sci. 66: 495-508. https://doi.org/10.1093/icesjms/fsn225

Simmonds J., MacLennan D. 2005. Fisheries Acoustics. Theory and Practice. Blackwell Science Ltd. 456 pp. https://doi.org/10.1002/9780470995303

Sobrino I., Baldó F., García-González D., et al. 2005. The effect of estuarine fisheries on juvenile fish observed within the Guadalquivir Estuary (SW Spain). Fish. Res. 76: 229-242. https://doi.org/10.1016/j.fishres.2005.06.016

Valavanis V.D., Pierce G.J., Zuur A.F., et al. 2008. Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS. Hydrobiologia 612: 5-20. https://doi.org/10.1007/s10750-008-9493-y

Vasconcelos R.P., Reis-Santos P., Maia A., et al. 2010. Nursery use patterns of commercially important marine fish species in estuarine systems along the Portuguese coast. Est. Coast. Shelf. Sci. 86: 613-624. https://doi.org/10.1016/j.ecss.2009.11.029

Weill A., Scalabrin C., Diner N. 1993. MOVIES-B: an acoustic detection description software. Application to shoal species' classification.

Whitehead P.J.P. 1985. FAO species catalogue. Vol. 7. Clupeoid fishes of the world. Annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, anchovies and wolfherrings. Part 1 - Chirocentridae, Clupeidae and Pristigasteridae. FAO Fisheries Synopsis 7, 303 pp.

Wood S.N. 2006. Generalized additive models: An introduction with R. Boca Raton, CRC Press. 391 pp.

Zwolinski J.P., Oliveira P.B., Quintino V., et al. 2010. Sardine potential habitat and environmental forcing off western Portugal. ICES J. Mar. Sci. 67: 1553-1564. https://doi.org/10.1093/icesjms/fsq068




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es