Scientia Marina, Vol 80, No 4 (2016)

Occurrence of adult anchovy in Catalonia (NW Mediterranean) in relation to sea surface conditions

Federico Quattrocchi
Institut de Ciències del Mar, CSIC, Spain

Valeria Mamouridis
Institut de Ciències del Mar, CSIC, Spain

Francesc Maynou
Institut de Ciències del Mar, CSIC, Spain


Generalized additive and generalized additive threshold models were used to study the relationship between landings per unit effort (LPUE) of anchovy, Engraulis encrasicolus, during the spawning season (May-October) from 2000-2010, and environmental variables, using sea surface data derived from satellite imagery (temperature, salinity, chlorophyll a, and meridional and zonal velocity current) in three fishing zones defined along the Catalan coast. The configuration of the environment where spawning aggregations occur affects early life stages and therefore the future demographic structure of the population. It is therefore fundamental to define the environmental conditions and their variations during the spawning season. Our results show that the low salinity in the Northern and Central sector and the velocity of the zonal and meridional currents in the Central and Southern sector, respectively, implicated in retention processes, increase LPUE during the spawning period. Temperature was related to LPUE in the Southern and in the Northern sectors, in both of which a non-linear positive effect with a local maximum peak at lower temperature values was present. However, in the Northern sector, this relationship held only for the period before 2007. After 2007 the decrease in preferred temperature suggests a reduction of the thermal window in which adult spawner aggregations occur. In agreement with previous studies on this species, the relationships were non-linear, stressing the importance of the match in timing and location between favourable conditions and spawning period as a crucial event for understanding the dynamics of small pelagics populations.


Engraulis encrasicolus; NW Mediterranean; environmental conditions; anchovy landings; generalized additive models

Full Text:



Agostini V.N., Bakun A. 2002. 'Ocean triads' in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11: 129-142.

Alheit J., Pohlmann T., Casini M., et al. 2012. Climate variability drives anchovies and sardines into the North and Baltic Seas. Progr. Oceanogr. 96: 128-139.

Bakun A. 1996. Patterns in the ocean: ocean processes and marine population dynamics. California Dea Grant College System, C.A. 323 pp.

Bakun A. 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Sci. Mar. 70: 105-122.

Basilone G., Guisande C., Patti B., et al. 2006. Effect of habitat conditions on reproduction of the European anchovy (Engraulis encrasicolus) in the Strait of Sicily. Fish. Oceanogr. 15: 271-280.

Basilone G., Bonanno A., Patti B., et al. 2013. Spawning site selection by European anchovy (Engraulis encrasicolus) in relation to oceanographic conditions in the Strait of Sicily. Fish. Oceanogr. 22: 309-323.

Bellido J.M., Brown A.M., Valavanis V.D., et al. 2008. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Hydrobiologia 612: 171-184.

Calvo E., Simó R., Coma R., et al. 2012. Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Clim. Res. 50: 1-29.

Cardinale M., Cheilari A., Raetz H.J. 2010. Scientific, Technical and Economic Committee for Fisheries (STECF). In: Assessment of Mediterranean stocks—Part 1. JRC Publications Repository. Publications Office of the European Union.

Castellón A., Font J., García E. 1990. The Liguro-Provençal-Catalan current (NW Mediterranean) observed by Doppler profiling in the Balearic Sea. Sci. Mar. 54: 269-276.

Ciannelli L., Chan K.S., Bailey K.M., et al. 2004. Nonadditive effects of the environment on the survival of a large marine fish population. Ecology 85: 3418-3427.

Craven P., Wahba G. 1979. Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Mat. 31: 377-403.

Cury P., Roy C. 1989. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46: 670-680.

Cushing D.H. 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26: 249-293.

ESRI. 1994. ARC Macro Language. Environmental Systems Research Institute Inc, USA: Redlands, CA, pp. 3-37.

Estrada M., Vives F., Alcaraz M. 1985. Life and the productivity of the open sea. In: Margalef R. (ed), Western Mediterranean. Pergamon Press, Oxford: pp. 148-197.

Farrugio H. 2013. Fisheries in the gulf of Lions. UNEP MAP RAC/ SPA. H. Ed. RAC/SPA, Tunis. pp. 79.

Fréon P., Cury P., Shannon L., et al. 2005. Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. Bull. Mar. Sci. 76: 385-462.

García A., Palomera I. 1996. Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin. Sci. Mar. 60(S2): 155-166.

Giannoulaki M., Iglesias M., Tugores M.P., et al. 2013. Characterising the potential habitat of European anchovy Engraulis encra sicolus in the Mediterranean Sea, at different life stages. Fish. Oceanogr. 22: 69-89.

Hastie T.J., Tibshirani R.J. 1990. Generalized additive models, vol 43. CRC Press. PMid:2243255

Houde E. 1997. Patterns and trends in larval stage growth and mortality of teleost fish. J. Fish. Biol. 51: 52-83.

Lasker R. 1981. The role of a stable ocean in larval fish survival and subsequent recruitment. In: Lasker R. (ed.), Marine fish larvae: morphology, ecology and relation to fisheries, vol. 1, Univ. Washington Press, Seattle, pp. 80-89.

Lisovenko L.A., Andrianov D.P. 1996. Reproductive biology of anchovy (Engraulis encrasicolus ponticus, Alexandrov 1927) in the Black Sea. Sci. Mar. 60: 209-218.

Lleonart J., Maynou F. 2003. Fish stock assessments in the Mediterranean: state of the art. Sci. Mar. 67: 37-49.

Lloret J., Lleonart J., Solé I. 2000. Time series modelling of landings in Northwest Mediterranean Sea. ICES J. Mar. Sci. 57: 171-184.

Lloret J., Lleonart J., Solé I., et al. 2001. Fluctuations of landings and environmental conditions in the north-western Mediterranean Sea. Fish. Oceanogr. 10: 33-50.

Lloret J., Palomera I., Salat J., et al. 2004. Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre (Ebro) River delta (north-western Mediterranean). Fish. Oceanogr. 13: 102-110.

Lluch-Belda D., Crawford R., Kawasaki T., et al. 1989. World-wide fluctuations of sardine and anchovy stocks: the regime problem. S. Afr. J. Mar. Sci. 8: 195-205.

Martín P., Sabatés A. 1991. Spatio-temporal distribution pattern of the red band-fish Cepola rubescens Linnaeus at different stages of its life cycle in the northwestern Mediterranean. J. Fish. Biol. 39: 549-557.

Martín P., Bahamon N., Sabatés A., et al. 2008. European anchovy (Engraulis encrasicolus) landings and environmental conditions on the Catalan Coast (NW Mediterranean) during 2000- 2005. In: Valavanis V.E., Essential Fish Habitat Mapping in the Mediterranean. Series Developments in Hydrobiology, vol. 203: 185-199. Springer.

Martín P., Sabatés A., Lloret J., et al. 2012. Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim. Chang. 110: 925-939.

Massé J., Leroy C., Halgand D., et al. 1995. Anchovy adult and egg distribution in the Bay of Biscay in relation to environmental conditions, as observed during acoustic surveys (1990, 1991, 1992). Actas del IV coloquio Internacional sobre Oceanografía del Golfo de Vizcaya: 281- 283. Santander.

Maynou F., Sabatés A., Salat J. 2014. Clues from the recent past to assess recruitment of Mediterranean small pelagic fishes under sea warming scenarios. Clim. Chang. 126: 175-188.

Millot C. 1991. Mesoscale and seasonal variabilities of the circulation in the western Mediterranean. Dyn. Atmos. Oceans. 15: 179-214.

Motos L., Uriarte A., Valencia V. 1996. The spawning environment of the Bay of Biscay anchovy (Engraulis encrasicolus L.). Sci. Mar. 60: 237-255.

Nicolle A., Garreau P., Liorzou B. 2009. Modelling for anchovy recruitment studies in the Gulf of Lions (Western Mediterranean Sea). Ocean Dynamics 59: 953-968.

Palomera I. 1992. Spawning of anchovy Engraulis encrasicolus in the Northwestern Mediterranean relative to hydrographic features in the region. Mar. Ecol. Prog. Ser. 79: 215-223.

Palomera I., Lleonart J. 1989. Field mortality estimates of anchovy larvae (Engraulis encrasicolus) in the western Mediterranean. J. Fish. Biol. 35 (suppl. A): 133-138.

Palomera I., Sabatés A. 1990. Co-occurrence of Engraulis encrasicolus and Sardinella aurita eggs and larvae in the northwestern Mediterranean. Sci. Mar. 54: 61-67.

Palomera I., Olivar M.P., Salat J., et al. 2007. Small pelagic fish in the NW Mediterranean Sea: an ecological review. Prog. Oceanogr. 74: 377-396.

Pertierra J.P. 1992. Biología pesquera de la anchoa Engraulis encrasicolus del Mar Catalán (NW Mediterráneo). PhD thesis, Univ. Politècnica de Catalunya, Barcelona.

Pertierra J.P., Lleonart J. 1996. NW Mediterranean anchovy fisheries. Sci. Mar. 60(Suppl. 2): 257-267.

Planque B., Bellier E., Lazure P. 2007. Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay. Fish. Oceanogr. 16: 16-30.

Pörtner H.O., Peck M. 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish. Biol. 77: 1745-1779. PMid:21078088

Razouls C., Kouwenberg J. 1993. Spatial distribution and seasonal variation of mesozooplankton biomass in the Gulf of Lions (northwestern Mediterranean). Oceanol. Acta 16: 393-401.

Rojas P., Garcia M., Sospedra J., et al. 1995. On the structure of the mean flow in the Blanes Canyon area (NW Mediterranean) during summer. Oceanol. Acta 18: 443-454.

Sabatés A., Olivar M.P., Salat J., et al. 2007a. Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean. Prog. Oceanogr. 74: 355-376.

Sabatés A., Salat J., Palomera I., et al. 2007b. Advection of anchovy (Engraulis encrasicolus) larvae along the Catalan continental slope (NW Mediterranean). Fish. Oceanogr. 16: 130-141.

Sabatés A., Salat J., Raya V., et al. 2013. Role of mesoscale eddies in shaping the spatial distribution of the coexisting Engraulis encrasicolus and Sardinella aurita larvae in the northwestern Mediterranean. J. Mar. Syst. 111: 108-119.

Santojanni A., Arneri E., Bernardini V., et al. 2006. Effects of environmental variables on recruitment of anchovy in the Adriatic Sea. Clim. Res. 31: 181-193.

Somarakis S., Nikolioudakis N. 2007. Oceanographic habitat, growth and mortality of larval anchovy (Engraulis encrasicolus) in the northern Aegean Sea (eastern Mediterranean). Mar. Biol. 152: 1143-1158.

Tudela S., Palomera I. 1995. Diel feeding intensity and daily ration in the anchovy Engraulis encrasicolus in the northwest Mediterranean Sea during the spawning period. Mar. Ecol. Prog. Ser. 129: 55-61.

Tudela S., Palomera I., Quílez G. 2002. Feeding of anchovy Engraulis encrasicolus larvae in the north-west Mediterranean. J. Mar. Biol. Ass. UK 82: 349-350.

Vargas-Yáñez M., Moya F., Tel E., et al. 2009. Warming and salting in the western Mediterranean during the second half of the 20th century: inconsistencies, unknowns and the effect of data processing. Sci. Mar. 73: 7-28.

Vargas-Yáñez M., Moya F., García-Martínez M., et al. 2010. Climate change in the Western Mediterranean sea 1900-2008. J. Mar. Syst. 82: 171-176.

Wood S., 2006. Generalized additive models: an introduction with R. CRC/Taylor and Francis.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support