Analysis and standardization of landings per unit effort of red shrimp Aristeus antennatus from the trawl fleet of Barcelona (NW Mediterranean)


  • Valeria Mamouridis Institut de Ciències del Mar, CSIC
  • Francesc Maynou Institut de Ciències del Mar, CSIC
  • Germán Aneiros Pérez Facultade de Informática



LPUE, standardized LPUE, Aristeus antennatus, generalized additive models, NW Mediterranean, deep-water fisheries


Monthly landings and effort data from the Barcelona trawl fleet (NW Mediterranean) were selected to analyse and standardize the landings per unit effort (LPUE) of the red shrimp (Aristeus antennatus) using generalized additive models. The dataset covers a span of 15 years (1994-2008) and consists of a broad spectrum of predictors: fleet-dependent (e.g. number of trips performed by vessels and their technical characteristics, such as the gross registered tonnage), temporal (inter- and intra-annual variability), environmental (North Atlantic Oscillation [NAO] index) and economic (red shrimp and fuel prices) variables. All predictors individually have an impact on LPUE, though some of them lose their predictive power when considered jointly. That is the case of the NAO index. Our results show that six variables from the whole set can be incorporated into a global model with a total explained deviance (ED) of 43%. We found that the most important variables were effort-related predictors (trips, tonnage, and groups) with a total ED of 20.58%, followed by temporal variables, with an ED of 13.12%, and finally the red shrimp price as an economic predictor with an ED of 9.30%. Taken individually, the main contributing variable was the inter-annual variability (ED=12.40%). This high ED value suggests that many factors correlated with inter-annual variability, such as environmental factors (the NAO in specific years) and fuel price, could in turn affect LPUE variability. The standardized LPUE index with the effort variability removed was found to be similar to the fishery-independent abundance index derived from the MEDITS programme.


Download data is not yet available.


Akaike H. 1973. Information theory as an extension of the maximum likelihood principle. In: Petrov B.N., Csáki F. (eds), Proc. 2nd Int. Symp. Information Theory, Akadémiai Kiadó, Budapest, pp. 267-281.

Bas C., Maynou F., Sardà F., Lleonart J. 2003. Variacions demogràfiques a les poblacions d'espècies demersals explotades: els darrers quaranta anys a Blanes i Barcelona. Inst. Est. Catalans. Arxiu de la Sec. Ciències, Barcelona. PMCid:PMC1808826

Bertrand J.A., de Sola L.G., Papaconstantinou C., Relini G., Souplet A. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17.

Brauner N., Shacham M. 1998. Role of range and precision of the independent variable in regression of data. Am. Inst. Chem. Eng. J. 44: 603-611.

Brodziak J., O'Brien L. 2005. Do environmental factors affect recruits per spawner anomalies of New England groundfish? ICES J. Mar. Sci. 62: 1394-1407.

Carbonell A., Carbonell M.S., Demestre M., Grau A., Montserrat S. 1999. The red shrimp Aristeus antennatus (Risso, 1816) fishery and biology in the Balearic Islands, western Mediterranean. Fish. Res. 44: 1-13.

Cardinale M., Osio G.C., Charef A. (eds). 2012. Report of the Scientific, Technical and Economic Committee for Fisheries on Assessment of Mediterranean Sea stocks – part 1. JRC Scientific and Policy Reports. European Commission.

Cartes J.E., Sardà F. 1992. Abundance and diversity of decapod crustaceans in the deep-Catalan sea (western Mediterranean). J. Nat. Hist. 26: 1305-1323.

Craven P., Wahba G. 1979. Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Mat. 31: 377-403.

Denis V., Lejeune J., Robin J.P. 2002. Spatio-temporal analysis of commercial trawler data using General Additive models: patterns of Loliginid squid abundance in the north-east Atlantic. ICES J. Mar. Sci. 59: 633-648.

Dennard S.T., MacNeil M.A., Treble M.A., Campana S., Fisk A.T. 2010. Hierarchical analysis of a remote, Arctic, artisanal longline fishery. ICES J. Mar. Sci. 67: 41-51.

FAO-FISHSTAT. 2011. FAO Fisheries Department, Fishery information, Data and Statistics Unit. FishstatJ, a tool for fishery statistical analysis, release 2.0.0. FAO, Rome.

Hastie T., Tibshirani R. 1990. Generalized additive models. Chapman Hall, London. PMCid:PMC332745

Hilborn R., Walters C.J. 1992. Quantitative Fisheries Stock Assessment. Chapman & Hall, New York. PMid:9908045

Lassen H., Medley P. 2000. Virtual population analysis. A practical manual for stock assessment. FAO Fisheries Technical Paper. No. 400. FAO, Rome. 129 p.

Lleonart J., Maynou F. 2003. Fish stock assessments in the Mediterranean: state of the art. Sci. Mar. 67: 37-49.

Marriott R.J., Wise B., St John J. 2011. Historical changes in fishing efficiency in the west coast demersal scalefish fishery, Western Australia: implications for assessment and management. ICES J. Mar. Sci. 68: 76-86.

Marx B.D., Eilers P.H.C. 1998. Direct generalized additive modelling with penalized likelihood. Comput. Statist. Data Anal. 28: 193-209.

Maunder M. N., Punt A. E. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70: 141-159.

Maunder M. N., Sibert J. R., Fonteneau A., Hampton J., Kleiber P., Harley S.J. 2006. Interpreting catch per unit effort data to assess the status of individual stocks and communities. ICES J. Mar. Sci. 63: 1373-1385.

Maynou F. 2008. Environmental causes of the fluctuations of red shrimp (Aristeus antennatus) landings in the Catalan Sea. J. Mar. Sys. 71: 294-302.

Maynou F., Demestre M., Sánchez P. 2003. Analysis of catch per unit effort by multivariate analysis and generalized linear models for deepwater crustacean fisheries off Barcelona (NW Mediterranean). Fish. Res. 64: 257-269.

Neal R.A., Maris R.C. 1985. Fishing biology of shrimps and shrimplike animals. In: Provenzano A.J. (ed.) The Biology of Crustacea Vol 10: Economic aspects: fisheries and culture. Academic Press Inc.

Orsi Relini L., Mannini A., Relini G. 2013. Updating knowledge on growth, population dynamics, and ecology of the blue and red shrimp, Aristeus antennatus (Risso, 1816), on the basis of the study of its instars. Mar. Ecol. 34: 90-102.

Sardà F., Maynou F. 1998. Assessing perceptions: do Catalan fishermen catch more shrimp on Fridays? Fish. Res. 36: 149-157.

Sardà F., Maynou F., Talló L. 1997. Seasonal and spatial mobility patterns of rose shrimps Aristeus antennatus in the Western Mediterranean: results of a long-term study. Mar. Ecol. Prog. Ser. 159: 133-141.

Scott D.W. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York.

Stefánsson G. 1996. Analysis of groundfish survey abundance data: combining the. GLM and delta approaches. ICES J. Mar. Sci. 53: 577-588.

Su N.J., Yeh S.Z., Sun C.L., Punt A.E., Chen Y., Wang S.P. 2008. Standardizing catch and effort data of the Taiwanese distant-water longline fishery in the western and central Pacific Ocean for bigeye tuna, Thunnus obesus. Fish. Res. 90: 235-246.

Wasserman L. 2005. All of Nonparametric Statistics. Springer, New York.

Wood S. N. 2006. Generalized Additive Models: An Introduction with R. CRC/Chapman Hall, Boca Raton, Florida.



How to Cite

Mamouridis V, Maynou F, Aneiros Pérez G. Analysis and standardization of landings per unit effort of red shrimp Aristeus antennatus from the trawl fleet of Barcelona (NW Mediterranean). Sci. mar. [Internet]. 2014Mar.30 [cited 2024Apr.21];78(1):7-16. Available from:



Featured Article

Most read articles by the same author(s)

1 2 3 > >>