Scientia Marina, Vol 80, No S1 (2016)

From field experiments to salinity products: a tribute to the contributions of Jordi Font to the SMOS mission


https://doi.org/10.3989/scimar.04285.04A

Adriano Camps
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya - IEEC/CTE-UPC - SMOS Barcelona Expert Centre, CSIC-UPC, Spain

Carolina Gabarró
SMOS Barcelona Expert Centre, CSIC-UPC - Institut de Ciències del Mar, CSIC, Spain

Mercè Vall-llossera
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya - IEEC/CTE-UPC - SMOS Barcelona Expert Centre, CSIC-UPC, Spain

Sebastià Blanch
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya, Spain

Albert Aguasca
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya, Spain

Francesc Torres
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya - SMOS Barcelona Expert Centre, CSIC-UPC, Spain

Ignasi Corbella
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya - SMOS Barcelona Expert Centre, CSIC-UPC, Spain

Nuria Duffo
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya - SMOS Barcelona Expert Centre, CSIC-UPC, Spain

Antonio Turiel
SMOS Barcelona Expert Centre, CSIC-UPC - Dept. d’Eng. Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Spain

Marcos Portabella
SMOS Barcelona Expert Centre, CSIC-UPC - Institut de Ciències del Mar, CSIC, Spain

Joaquim Ballabrera-Poy
SMOS Barcelona Expert Centre, CSIC-UPC - Institut de Ciències del Mar, CSIC, Spain

Verónica González-Gambau
SMOS Barcelona Expert Centre, CSIC-UPC - Institut de Ciències del Mar, CSIC, Spain

Justino Martínez
SMOS Barcelona Expert Centre, CSIC-UPC - Institut de Ciències del Mar, CSIC, Spain

Ramón Villarino
Dept. d’Eng. Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Spain

Luís Enrique
ICFO, Mediterranean Technology Park, Spain

Alessandra Monerris
Faculty of Engineering, Monash University, Australia

Xavier Bosch
Microwave Systems Lab., Dept. of Electrical and Computer Eng., Colorado State Univ., United States

Roberto Sabia
Telespazio-Vega UK Ltd for ESA/ESRIN, Italy

Marco Talone
Institute for Environment and Sustainability (IES), Italy

Maria Piles
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya - IEEC/CTE-UPC - SMOS Barcelona Expert Centre, CSIC-UPC, Spain

Míriam Pablos
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya - IEEC/CTE-UPC - SMOS Barcelona Expert Centre, CSIC-UPC, Spain

Enric Valencia
Dept. Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya, Spain

Abstract


This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre.

Keywords


SMOS; radiometry; interferometry; calibration; validation; salinity; soil moisture; sea ice; GNSS-R

Full Text:


HTML PDF XML

References


Blanch S., Aguasca A. 2004. Seawater dielectric permittivity model from measurements at L band. Proced. IEEE Geosci. Rem. Sens. Symp. 2: 1362-1365. http://dx.doi.org/10.1109/igarss.2004.1368671

Boutin J., Martin N., Yin Y., et al. 2012. First assessment of SMOS data over open ocean: Part II-sea surface salinity. IEEE Trans. Geosci. Rem. Sens. 50 : 1662-1675. http://dx.doi.org/10.1109/TGRS.2012.2184546

Camps A., Font J., Etcheto J., et al. 2002. L-band sea surface emissivity radiometric observations under high winds: Preliminary results of the Wind and Salinity Experiment WISE-2001. Proceed. IEEE Geosci. Rem. Sens. Symp. 3: 1367-1369. http://dx.doi.org/10.1109/igarss.2002.1026118

Camps A., Font J., Vall-llossera M., et al. 2004. The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Trans. Geosci. Rem. Sens. 42(4): 804-823. http://dx.doi.org/10.1109/tgrs.2003.819444

Camps A., Vall-llossera M., Villarino R., et al. 2005. The emissivity of foam-covered water surface at L-band: theoretical modeling and experimental results from the FROG 2003 field experiment. IEEE Trans. Geosci. Rem. Sens. 43(5): 925-937. http://dx.doi.org/10.1109/TGRS.2004.839651

Camps A., Bosch-Lluis X., Ramos-Perez I., et al. 2009. New Passive Instruments Developed for Ocean Monitoring at the Remote Sensing Lab—Universitat Politècnica de Catalunya. Sensors 9: 10171-10189. http://dx.doi.org/10.3390/s91210171 PMid:22303168 PMCid:PMC3267216

Chaparro D., Vall-llossera M., Piles M., and the SMOS-BEC Team. 2015. Remotely sensed soil moisture and forestry applications. SMOS Science Workshop ESA-ESAC, Villafranca del Castillo (Madrid), Spain.

Corbella I., Torres F., Duffo N., et al. 2008 Brightness Temperature retrievals from the Small Airborne MIRAS, IGARSS'08, Massachusetts, USA.

Corbella I, Torres F., Duffo N., et al. 2009. On-Ground Characterization of the SMOS Payload, 2009. Trans. Geosci. Rem. Sens. 47: 3123-3132. http://dx.doi.org/10.1109/TGRS.2009.2016333

Ellison W., Balana A., Delbos G., et al. 1998. New Permittivity Measurements of Sea Water. Radio Sci. 33(3): 639-648. http://dx.doi.org/10.1029/97RS02223

Emelianov M., Font J., Julià A., et al. 2003. Sea surface fields at Casablanca site (NW Mediterranean) during the EuroSTARRS campaign. In: Proceedings of SMOS Campaigns Workshop, ESA SP. 525: 73-80.

Font J., Gabarró C., Julià A., et al. 2003. Oceanographic conditions during the Wind and Salinity Experiment 2000 and 2001, NW Mediterranean Sea. In: Proceedings of SMOS Campaigns Workshop, ESA SP. 525: 51-59.

Gabarró C. 2004. Study of salinity retrieval errors for the SMOS mission. PhD thesis, Tech. Univ. Catalonia.

Gabarró C., Font J., Camps A., et al. 2003. Retrieved Sea Surface Salinity and Wind Speed from L-Band measurements for WISE and EuroSTARRS campaigns. In: Proceedings of SMOS Campaigns Workshop, ESA SP. 525: 163-171.

Gabarró C., Font J., Camps A., et al. 2004. A new empirical model of sea surface microwave emissivity for salinity remote sensing. Geophys. Res. Lett. 31: L01309. http://dx.doi.org/10.1029/2003GL018964

Gabarró C., Pla Q., Elosegui P., et al. 2015. Investigating SMOS data for sea ice concentration determination. SMOS Science Workshop, ESAC- Madrid, Spain.

Guimbard S., Gourrion J., Portabella M., et al. 2012. SMOS Semi- Empirical Ocean Forward Model Adjustment. IEEE Trans. Geosci. Rem. Sens. 50: 1676-1687. http://dx.doi.org/10.1109/TGRS.2012.2188410

Hollinger J.P. 1971. Passive Microwave Measurements of Sea Surface Roughness. IEEE Trans. Geosci. Electronics, GE-9(3): 165-169. http://dx.doi.org/10.1109/TGE.1971.271489

Klein L.A., Swift C.T. 1977. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Anten. Propag. AP 25: 104-111. http://dx.doi.org/10.1109/TAP.1977.1141539

LeVine D.M., Zaitzeff J.B., D'Sa E.J., et al. 2000. Sea surface salinity: toward an operational remote-sensing system. Satellites, oceanography and society. Elsevier Oceanography Series 63: 321-335.

Marchan J.F., Camps A., Rodríguez N., et al. 2009. An Efficient Algorithm to the Simulation of Delay–Doppler Maps of Reflected Global Navigation Satellite System Signals. IEEE Trans. Geosci. Rem. Sens. 47: 2733-2740. http://dx.doi.org/10.1109/TGRS.2009.2014465

Martin-Neira M., Cabeza I., Pérez C., et al. 2008. AMIRAS – an airborne MIRAS demonstrator. IEEE Trans. Geosci. Rem. Sens. 46(3): 705-716. http://dx.doi.org/10.1109/TGRS.2008.916266

Miller J., Goodberlet M.A., Zaitzeff J. 1996. Airborne salinity map per makes debut in coastal zone. EOS Trans. AGU 79: 173-177. http://dx.doi.org/10.1029/98EO00126

Pablos M., Piles M., González-Gambau V., et al. 2014. SMOS and Aquarius Radiometers: Inter-Comparison over Selected Targets, IEEE J-STARS 7(9): 3833-3844. http://dx.doi.org/10.1109/jstars.2014.2321455

Pablos M., Piles M. González-Gambau V., et al. 2015a. Ice Thickness Effects on Aquarius Brightness Temperatures over Antarctica. J Geophys Res C 120(4): 2856-2868. http://dx.doi.org/10.1002/2014JC010151

Pablos M., Piles M., González-Gambau V., et al. 2015b. Influence of Ice Thickness on SMOS and Aquarius Brightness Temperatures over Antarctica. IEEE IGARSS 2015, 26-31 July 2015, Milan (Italy) pp. 5178-5181. http://dx.doi.org/10.1109/igarss.2015.7327000

Piles M., Sánchez N., Vall-llossera M., et al. 2014. A Downscaling Approach for SMOS Land Observations: Evaluation of High- Resolution Soil Moisture Maps Over the Iberian Peninsula. IEEE J-STARS 7(9): 3845-3857. http://dx.doi.org/10.1109/jstars.2014.2325398

Ruf C.S., Swift C.T., Tanner A.B. et al. 1998. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans. Geosci. Rem. Sens. 26: 597-611. http://dx.doi.org/10.1109/36.7685

Silvestrin P., Berger M., Kerr Y., et al. 2001. ESA's second earth explorer opportunity mission: The soil moisture and ocean salinity mission— SMOS. IEEE Geosci. Rem. Sens. Newslett. 118: 11-14.

SMOS Salinity Expert Support Laboratories. 2014. SMOS L2 OS Algorithm Theoretical Baseline Document, ref SO-TN-ARG-GS-0007.

Swift C.T. 1980. Passive microwave remote sensing of the ocean - a review. Boundary - Layer Meteorology. 18: 25-54. http://dx.doi.org/10.1007/BF00117909

Swift C.T., McIntosh R.E. 1983. Considerations for microwave remote sensing of ocean-surface salinity. IEEE Trans. Geosci. Elec. 21: 480-491. http://dx.doi.org/10.1109/TGRS.1983.350511

Talone M., Camps A., Marchan-Hernandez J.F., et al. 2009. Preliminary Results of the Advanced LBand Transmission and Reflection Observation of the Sea Surface (ALBATROSS) Campaign: Preparing the SMOS Calibration and Validation Activities. Proc. IEEE Int. Geosci. and Rem. Sens. Symp., Cape Town, South Africa.

Turiel A., Nieves V., Garcia-Ladona E., et al. 2009. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines. Ocean Sci. 5(4): 447-460. http://dx.doi.org/10.5194/os-5-447-2009

Turiel A., Piles M., González-Gambau V., et al. 2016. 2000 days of SMOS at the Barcelona Expert Centre: a tribute to the work of Jordi Font. Sci. Mar. 80S1: 173-193.

Valencia E., Camps A., Rodriguez-Alvarez N., et al. 2011. Improving the accuracy of sea surface salinity retrieval using GNSS-R data to correct the sea state effect. Radio Sci. 46: RS0C02. http://dx.doi.org/10.1029/2011RS004688




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es