Detection of a weak meddy-like anomaly from high-resolution satellite SST maps

Authors

  • Mikhail Emelianov Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC
  • Mariona Claret Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC
  • Eugenio Fraile-Nuez Instituto Español de Oceanografía, Centro Oceanográfico de Canarias
  • Maria Pastor Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC
  • Irene Laiz Instituto de Ciencias Marinas de Andalucía, CSIC
  • Joaquín Salvador Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC
  • Josep L. Pelegrí Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC
  • Antonio Turiel Departament d’Oceanografia Física, Institut de Ciencies del Mar, CSIC

DOI:

https://doi.org/10.3989/scimar.03619.19I

Keywords:

meddy, satellite image, vorticity, thermohaline anomaly, observation in situ

Abstract


Despite the considerable impact of meddies on climate through the long-distance transport of properties, a consistent observation of meddy generation and propagation in the ocean is rather elusive. Meddies propagate at about 1000 m below the ocean surface, so satellite sensors are not able to detect them directly and finding them in the open ocean is more fortuitous than intentional. However, a consistent census of meddies and their paths is required in order to gain knowledge about their role in transporting properties such as heat and salt. In this paper we propose a new methodology for processing high-resolution sea surface temperature maps in order to detect meddy-like anomalies in the open ocean on a near-real-time basis. We present an example of detection, involving an atypical meddy-like anomaly that was confirmed as such by in situ measurements.

Downloads

Download data is not yet available.

References

Ambar I., Serra N., Neves F., Ferreira T. 2008. Observations of the Mediterranean undercurrent and eddies in the Gulf of Cadiz during 2001. J. Mar. Syst. 7: 195-220. http://dx.doi.org/10.1016/j.jmarsys.2007.07.003

Armi L., Hebert D., Oakey N. 1989. Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr. 19: 354-370. http://dx.doi.org/10.1175/1520-0485(1989)019<0354:TYITLO>2.0.CO;2

Bashmachnikov I., Machin F., Mendonça A., Martins A. 2009. In situ and remote sensing signature of meddies east of the mid-Atlantic ridge. J. Geophyis. Res. 114, C05018: 1-16.

Bell M., R. Forbes, and A. Hines. 2000. Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting. J. Mar. Syst. 25: 1-22. http://dx.doi.org/10.1016/S0924-7963(00)00005-1

Chelton D.B., deSzoeke R.A., Schlax M.G., El Naggar K., Siwertz N. 1998. Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28: 433-460. http://dx.doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2

Emelianov M., Fedorov K. 1985. Structure and transformation of intermediate waters of the Mediterranean Sea and Atlantic Ocean, Oceanol. Acad. Sci. USSR. 25: 155-161.

Emelianov M., Font J., Turiel A., Millot C., Sol J., Poulain P., Julià A., Vitrià M. 2006. Transformation of Levantine Intermediate Water tracked by MEDARGO floats in the Western Mediterranean Ocean Sci. 2: 281-290.

Fedorov K. 1986. Intrathermocline eddies in the ocean. Rep. Inst. Oceanol. Acad. Sci. USSR, 150 pp.

Font J., Ballabrera-Poy J., Camps A., Corbella I., Duffo N., Duran I., Emelianov M., Enrique L., Fernández P., Gabarró C., González C., González V., Gourrion J., Guimbard S., Hoareau N., Julià A., Kalaroni S., Konstantinidou A., López de Aretxabaleta A., Martínez J., Miranda J., Monerris A., Montero S., Mourre B., Pablos M., Pérez F., Piles M., Portabella M., Sabia R., Salvador J., Talone M., Torres F., Turiel A., Vall-llossera M., Villarino R., 2012. A new space technology for ocean observation: the SMOS mission. Sci. Mar. 76S1: 249-259.

Isern-Fontanet J., Turiel A., García-Ladona E., Font J. 2007. Microcanonical multifractal formalism: application to the estimation of ocean surface velocities. J. Geophys. Res. 112, C05024. http://dx.doi.org/10.1029/2006JC003878

McDowell S., Rossby H.T. 1978. Mediterranean water: an intense mesoscale eddy off the Bahamas. Science 202 (4372): 1085-1087. http://dx.doi.org/10.1126/science.202.4372.1085 PMid:17777959

Panteleev G., Maximenko N., Deyoung B., Reiss C., Yamagata T. 2000. Variational interpolation of circulation with nonlinear, advective smoothing. J. Atmos. Ocean. Tech. 19: 1442-1450. http://dx.doi.org/10.1175/1520-0426(2002)019<1442:VIOCWN>2.0.CO;2

Richardson P., Tychensky A. 1998. Meddy trajectories in the Canary Basin measured during the SEMAPHORE experiment, 1993-1995. J. Geophys.Res. 103, C11: 25029-25045. http://dx.doi.org/10.1029/97JC02579

Serra N., Ambar I., Boutov D. 2010. Surface expression of Mediterranean water dipoles and their contribution to the shelf/slope - open ocean exchange. Ocean Sci. 6: 191-209. http://dx.doi.org/10.5194/os-6-191-2010

Shapiro G., Meschanov S. 1991. Distribution and spreading of red sea water and salt lens formation in the Northwest Indian Ocean. Deep Sea Res. Part A. 38: 21-34. http://dx.doi.org/10.1016/0198-0149(91)90052-H

Shapiro G., Meschanov S., Emelianov M., 1995. Mediterranean lens "Irving" after its collision with seamounts. Oceanol. Acta 183: 309-318.

Stark J.D., Donlon C.J., Martin M.J., McCulloch M.E. 2007. OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. Proc. Conf. Oceans '07 IEEE Aberdeen.

Stammer D., Hirinchensen H.H., Käse R.H. 1991. Can meddies be detected by satellite altimetry? J. Geophys. Res. 21: 879-892.

Schlitzer R. 2008. Ocean Data View, http://odv.awi.de

Turiel A., Isern-Fontanet J., García-Ladona E., Font J. 2005. Multifractal method for the instantaneous evaluation of the stream function in geophysical flows. Phys. Rev. Lett. 95: 104502. http://dx.doi.org/10.1103/PhysRevLett.95.104502 PMid:16196934

Turiel A., Solé J., Nieves V., Ballabrera-Poy J., García-Ladona E. 2008a. Tracking oceanic currents by singularity analysis of micro-wave sea surface temperature images, Remote Sens. Environ. 112: 2246-2260. http://dx.doi.org/10.1016/j.rse.2007.10.007

Turiel A., Yahia H., Pérez-Vicente C. 2008b. Microcanonical multifractal formalism: a geometrical approach to multifractal systems. Part I: Singularity analysis. J. Phys. A 41: 015501. http://dx.doi.org/10.1088/1751-8113/41/1/015501

Yan X.-H., Jo Y., Liu W., He M.-X. 2006. A new study of the Mediterranean outflow, air-sea interactions, and Meddies using multisensor data. J. Phys. Oceanogr. 36: 691-710. http://dx.doi.org/10.1175/JPO2873.1

Zatsepin A., Didkovskii V., Semenov A. 1998. Self-oscillatory mechanism of periodical eddy structure formation from a stationary local source on the sloping bottom in a rotating fluid, Oceanol. Acad. Sci. USSR. 3: 47-55.

Downloads

Published

2012-09-30

How to Cite

1.
Emelianov M, Claret M, Fraile-Nuez E, Pastor M, Laiz I, Salvador J, Pelegrí JL, Turiel A. Detection of a weak meddy-like anomaly from high-resolution satellite SST maps. scimar [Internet]. 2012Sep.30 [cited 2022Jul.2];76(S1):229-34. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1387

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>