Scientia Marina, Vol 80, No S1 (2016)

Thirty years of research and development of Lagrangian buoys at the Institute of Marine Sciences


https://doi.org/10.3989/scimar.04325.14A

Emilio García-Ladona
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Joaquim Salvador
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Pere Fernandez
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Josep L. Pelegrí
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Pedro Elósegui
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Oriol Sánchez
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Jose Antonio Jiménez Madrid
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Fernando Pérez
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Joaquim Ballabrera
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Jordi Isern-Fontanet
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Jordi Salat
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Jordi Font
Dept. of Physical and Technological Oceanography, Institut de Ciències del Mar, CSIC, Spain

Abstract


Since the mid-1980s, physical oceanographers at the Institute of Marine Sciences have been involved in the use of Lagrangian drifters as a complementary technology for their oceanographic research. As Lagrangian observations became more feasible, these researchers continued developing their own drifters in what was to be the seed of current technological activities at the Physical and Technological Oceanography Department. In this paper we overview the work done during the last 30 years with special focus on Lagrangian developments from the initial activities to the latest developments. In addition to basic oceanography research applications, Lagrangian technological developments include prototypes for measuring surface and subsurface ocean properties, for tracking purposes in search and rescue operations and pollution events, and for monitoring ice motion and thickness in the Arctic. The paper emphasizes original and unpublished technical aspects related to the latest developments.

Keywords


Lagrangian drifters; sea surface measurements; salinity measurements; oil spills drifters; SMOS

Full Text:


HTML PDF XML

References


Abascal A., Castanedo S., Mendez F., et al. 2009. Calibration of a Lagrangian Transport Model Using Drifting Buoys Deployed during the Prestige Oil Spill. J. Coast. Res. 25: 80-90. http://dx.doi.org/10.2112/07-0849.1

Abbott M., Brink K., Booth C.R., et al. 1995. Scales of variability of bio-optical properties as observed from near-surface drifters. J. Geophys. Res. 100(C7): 13345-13367. http://dx.doi.org/10.1029/94JC02457

Benzohra M., Millot C. 1995. Hydrodynamics of an open sea Algerian eddy. Deep-Sea Res. Part I: Oceanographic Research Papers, 42: 1831-1847. http://dx.doi.org/10.1016/0967-0637(95)00046-9

Bitterman D., Hansen D. 1993. Evaluation of sea surface temperature measurements from drifting buoys. J. Atmos. Oceanic Technol. 10: 88-96. http://dx.doi.org/10.1175/1520-0426(1993)010<0088:EOSSTM>2.0.CO;2

Brion E., Gaillard F., de la Villeon L.P., et al. 2010. GLOSCAL: In-situ datasets and gridded fields for calibration and validation of SMOS. In: Proceedings of ESA-Living Planet Symposium. ESA publications. ESA SP-686. ISBN 978-92-9221-250-6

Camps A., Font J., Vall-llossera M., et al. 2004. The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface l-band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Trans. Gesosci. Remote Sens. 42(4): 804-823. http://dx.doi.org/10.1109/TGRS.2003.819444

Castanedo S., Medina R., Losada I., et al. 2006. The prestige oil spill in Cantabria (Bay of Biscay). Part I: Operational forecasting system for quick response, risk assessment and protection of natural resources. J. Coast. Res. 22: 1474-1489. http://dx.doi.org/10.2112/04-0364.1

Claret M., Rodríguez R., Pelegrí J.L. 2012. Salinity intrusion and convective mixing in the Atlantic Equatorial Undercurrent. Sci. Mar. 76S1: 117-129.

Davis R. 1985a. Drifter observations of coastal surface currents during CODE: The Method and the Descriptive View. J. Geophys. Res. 90(C3): 4741-4755. http://dx.doi.org/10.1029/JC090iC03p04741

Davis R. 1985b. Drifter observations of coastal surface currents during CODE: The Statistical and Dynamical views. J. Geophys. Res. 90(C3): 4756-4772. http://dx.doi.org/10.1029/JC090iC03p04756

Davis R., Sherman J., Dufour J. 2001. Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Oceanic Technol. 18: 982-993. http://dx.doi.org/10.1175/1520-0426(2001)018<0982:PAAOAI>2.0.CO;2

Duarte C. 2015. Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 24: 11-14. http://dx.doi.org/10.1002/lob.10008

Elosegui P., Wilkinson J., Olsson M., et al. 2012. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography. In: AGU Fall Meeting Abstracts, pp. C13E-0662.15

EPA. 1990. United States Environmental Protection Agency: Oil pollution act. Available at http://www.epa.gov/oem/content/lawsregs/opaover.htm

Font J., Salat J., Wang D. 1988. Lagrangian and Eulerian observation of inertial oscillations in the shelf break offshore the Ebro River Delta (Catalan Sea, NW Mediterranean). Rapp. Comm. Iint. Mer Médit. 31: 2.

Font J., Millot C., Salas J., et al. 1998. The drift of modified Atlantic water from the Alboran Sea to the Eastern Mediterranean. Sci. Mar. 62: 211-216. http://dx.doi.org/10.3989/scimar.1998.62n3211

Font J., Gabarró C., Julià A., et al. 2003. Oceanographic conditions during the wind and salinity experiment 2000 and 2001, NW Mediterranean Sea. In: Wursteisen P., Fletcher P. (eds), SP- 525- EuroSTARRS, WISE, LOSAC Campaigns. Ed.. ESA Publications Division, 51-59. UNIV./INST./ORG: ESTECISBN: 92-9092-835-2. ISSN: 0379-6566.

Font J., Camps A., Borges A., et al. 2010. SMOS: The challenging measurement of sea surface salinity from space. In: Proceedings of the IEEE, volume 98 (5): 649-665. Institute of Electrical and Electronics Engineers (IEEE). ISSN: 0018-9219.

Gabarró C., Vall-llosera M., Font J., et al. 2004. Determination of sea surface salinity and wind speed by L-band microwave radiometry from a fixed platform. Int. J. Remote Sens. 25: 111-128. http://dx.doi.org/10.1080/0143116031000115175

García-Ladona E., Font J., Del Río E., et al. 2005. The use of surface drifting floats in the monitoring of oil spills. The Prestige case. In: Proceedings of the 19 Biennial International Oil Spill Conference (IOSC), Miami, CD-ROM: 14718A. PMid:16196934

García-Olivares A., de Pablos J., Madrigal R. 2011. Sailing the Prestige out to sea. An independent analysis. Sci. Mar. 75: 533-548. http://dx.doi.org/10.3989/scimar.2011.75n3533

Gerin R., Poulain P.-M., Bussani A., et al. 2012. First TOSCA drifter experiment in the Gulf of Trieste (april 2012). Technical report, Instituto Nazionale di Oceanografia e di Geofisica Sperimentale. REL. OGS 2012/91 OCE 6 SIRE, Trieste, Italy, 32 pp.

Hansen D., Herman A. 1989. Temporal sampling requirements for surface drifting buoys in the Tropical Pacific. J. Atmos. Oceanic Technol. 6: 599-607. http://dx.doi.org/10.1175/1520-0426(1989)006<0599:TSRFSD>2.0.CO;2

Hansen D., Poulain P.-M. 1996. Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Oceanic Technol. 13: 900-909. http://dx.doi.org/10.1175/1520-0426(1996)013<0900:QCAIOW>2.0.CO;2

Hwang B., Elosegui P., Wilkinson J. 2015. Small-scale deformation of an Arctic sea ice flow detected by GPF and satellite imagery. Deep-Sea Res. Part II 120: 3-20. http://dx.doi.org/10.1016/j.dsr2.2015.01.007

IMO. 1993. ISM-CODE: International Safety Management code. International Maritime Organization. Available at: http://www.imo.org/OurWork/HumanElement/SafetyManagement/Pages/ISMCode.aspx

IMO. 2011. MARPOL (Consolidated Edition 2011). International Maritime Organization.

Isern-Fontanet J., Font J., García-Ladona E., et al. 2004. Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter. Deep- Sea Res. Part II 51: 3009-3028. http://dx.doi.org/10.1016/j.dsr2.2004.09.013

ITOPF. 2013. Oil tanker spill statistics. The International Tanker Owners Pollution Federation Limited. Available at: http://www.itopf.com/information%2Dservices/publications/ documents/OilSpillstats2013.pdf

Lagerloef G., Font J. 2010. SMOS and Aquarius/SAC-D missions: The Era of Spaceborne Salinity Measurements is about to begin. In: Barale V., Gower J., Alberotanza L. (eds). Oceanography from Space. Springer Science+Business Media B.V. pp. 35-58. http://dx.doi.org/10.1007/978-90-481-8681-5_3

Lumpkin R., Pazos M. 2007. Measuring surface currents with surface velocity program drifters: the instrument, its data, and some recent results. In: Griffa A., Kirwan Jr. A.D., Mariano A.K., et al. (eds). Lagrangian Analysis and Predictions of Coastal and Ocean Dynamics. Cambridge University Press., pp. 39-67. http://dx.doi.org/10.1017/CBO9780511535901.003

McPhaden M., Freitag H., Shepherd A. 1990. Moored salinity time series measurements at 0º-140º. J. Atmos. Oceanic Technol. 7: 568-575. http://dx.doi.org/10.1175/1520-0426(1990)007<0568:MSTSMA>2.0.CO;2

Millot C. 1991. Mesoscale and seasonal variabilities of the circulation in the western Mediterranean. Dyn. Atmos. Oceans 15: 179-214. http://dx.doi.org/10.1016/0377-0265(91)90020-G

Morán X.A.G., Taupier-Letage I., Ruiz S., et al. 2001. Physical-biological coupling in the Algerian basin (SW Mediterranean): Influence of mesoscale instabilities on the biomass and production of phytoplankton and bacterioplankton. Deep-Sea Res. Part I 48: 405-437. http://dx.doi.org/10.1016/S0967-0637(00)00042-X

Mémery L., Reverdin G., Paillet J., et al. 2005. Introduction to the POMME special section: Thermocline ventilation and biogeochemical tracer distribution in the northeast Atlantic ocean and impact of mesoscale dynamics. J. Geophys. Res. 110: C07S01. http://dx.doi.org/10.1029/2005JC002976

Nihoul J., Jamart B. (eds). 1989. Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence. Proceedings of the 20th International liège Colloquium on ocean hydrodynamics. Elsevier, Amsterdam.

Niiler P. 2003. A brief history of drifter technology. In: Autonomous and Lagrangian Platforms and Sensors Workshop. La Jolla, CA, Scripps Institution of Oceanography. PMid:14668872

Niiler P., Davis R., White H. 1987. Water-following characteristics of a mixed layer drifter. Deep-Sea Res. Part I 34: 1867-1882. http://dx.doi.org/10.1016/0198-0149(87)90060-4

Niiler P., Sybrandy A., Poulain P., et al. 1995. Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res. Part I 42: 1951-1964. http://dx.doi.org/10.1016/0967-0637(95)00076-3

Pe-a-Izquierdo J., Pelegrí J.L., Pastor M., et al. 2012. The continental slope current system between Cape Verde and the Canary Islands. Sci. Mar. 76S1: 65-78.

Reverdin G., Blouch P., Boutin J., et al. 2007. Surface salinity measurements COSMOS 2005 experiment in the Bay of Biscay. J. Atmos. Oceanic Technol. 24: 1643-1654. http://dx.doi.org/10.1175/JTECH2079.1

Reverdin G., Morisset S., Marié L., et al. 2015. Surface salinity in the north atlantic subtropical gyre during the STRASSE/SPURS summer 2012 cruise. Oceanography 28: 114-123. http://dx.doi.org/10.5670/oceanog.2015.09

Richardson P. 1983. Eddy kinetic energy in the north Atlantic from surface drifters. J. Geophys. Res. 88(C7): 4355-4367. http://dx.doi.org/10.1029/JC088iC07p04355

Roemmich D., Owens W. 2000. The Argo project: Global ocean observations for understanding and prediction of climate variability. Oceanography 13: 45-50. http://dx.doi.org/10.5670/oceanog.2000.33

Roemmich D., Johnson G., Riser S., et al. 2009. The Argo project: Global ocean observations for understanding and prediction of climate variability. Oceanography 22: 34-43. http://dx.doi.org/10.5670/oceanog.2009.36

Rossby T. 2007. Evolution of lagrangian methods in oceanography. In: Griffa A., Kirwan Jr. A.D., Mariano A.K., et al. (eds). Lagrangian Analysis and Predictions of Coastal and Ocean Dynamics, Cambridge University Press. pp. 1-38. http://dx.doi.org/10.1017/CBO9780511535901.002

Ruiz S., Font J., Emelianov M., et al. 2002. Deep structure of an open sea eddy in the Algerian basin. J. Mar. Syst. 33-34: 179-195. http://dx.doi.org/10.1016/S0924-7963(02)00058-1

Ruiz-Villarreal M., González-Pola C., del Rio G.D., et al. 2006. Oceanographic conditions in the north and northwest Iberia and their influence on the Prestige oil spill. Mar. Poll. Bull. 53: 220-238. http://dx.doi.org/10.1016/j.marpolbul.2006.03.011 PMid:16698046

Sabatés A., Olivar M.P., Salat J., et al. 2007. Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean. Prog. Oceanogr. 74: 355-376. http://dx.doi.org/10.1016/j.pocean.2007.04.017

Salas J. 2003. Evolution of the open-sea eddy ALGERS'98 in the Algerian basin with Lagrangian trajectories and remote sensing observations. J. Mar. Syst. 43: 105-131. http://dx.doi.org/10.1016/j.jmarsys.2003.08.001

Salas J., Millot C., Font J., et al. 2002. Analysis of mesoscale phenomena in the Algerian basin observed with drifting buoys and infrared images. Deep-Sea Res. Part I 49: 245-266. http://dx.doi.org/10.1016/S0967-0637(01)00052-8

Salat J. 2010. Agustí Julià i Brugués (1940-2009). Sci. Mar. 74: 197-201. http://dx.doi.org/10.3989/scimar.2010.74n1197

Salat J., Tintoré J., Font J., et al. 1992. Near-inertial motion on the shelf-slope front off northeast Spain. J. Geophys. Res. 97(C5): 7277-7281. http://dx.doi.org/10.1029/92JC00588

SOLAS. 1974. International convention for the safety of life at sea. International Maritim Organization (IMO). Available at: http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-Safety-of-Life-at-Sea-%28SOLAS%29,-1974.aspx

Sotillo M., Alvarez-Fanjul E., Castanedo S., et al. 2008. Towards an operational system for oil spill forecast over Spanish waters: Initial developments and implementation. Mar. Poll. Bull. 56: 686-703. http://dx.doi.org/10.1016/j.marpolbul.2007.12.021 PMid:18321533

Sotillo M.G., Cailleau S., Lorente P., et al. 2015. The MyOcean IBI Ocean Forecast and Reanalysis Systems: operational products and roadmap to the future Copernicus Service. J. Operational Oceanog. 8(1): 63-79. http://dx.doi.org/10.1080/1755876X.2015.1014663

Swenson M., Niiler P.P., Sybrandy A.L., et al. 1991. Feasibility of attaching seacats to TOGA drifter. Ref. Ser., Scripps Inst. of Oceanogr., La Jolla, Calif., pp. 91-30.

Swenson M., Niiler P.P., Sybrandy A.L., et al. 1992. Drifter observations of a cold filament off Point Arena, California in july 1988. J. Geophys. Res. 97(C3): 3593-3610. http://dx.doi.org/10.1029/91JC02736

Sybrandy A., Niiler P., Sombardier L. 1992. Technical improvements to the WOCE/TOGA lagrangian drifter. In: Proceedings of the OCEANS'92 conference on mastering the oceans Through Technology, volume 2, pp. 718-720. IEEE. http://dx.doi.org/10.1109/OCEANS.1992.607671

Wang D., Vieira M., Salat J., et al. 1988. A shelf/slope frontal filament off the northeast Spanish coast. J. Mar. Res. 46: 321-332. http://dx.doi.org/10.1357/002224088785113586

WMO 1988. WOCE surface velocity program planning committee report of first meeting: SVP-1 and TOGA pan-Pacific surface current study. World Climate Research Program Wormley: World Meteorological Organization. 33 pp. WMO/TD-No.323, WCRP-26.




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es