Parameter constraints of grazing response functions. Implications for phytoplankton bloom initiation
DOI:
https://doi.org/10.3989/scimar.04271.18AKeywords:
algal blooms, plankton, prey selection, grazing functions, multispecies model, mathematical constraintsAbstract
Phytoplankton blooms are events of production and accumulation of phytoplankton biomass that influence ecosystem dynamics and may also have effects on socio-economic activities. Among the biological factors that affect bloom dynamics, prey selection by zooplankton may play an important role. Here we consider the initial state of development of an algal bloom and analyse how a reduced grazing pressure can allow an algal species with a lower intrinsic growth rate than a competitor to become dominant. We use a simple model with two microalgal species and one zooplankton grazer to derive general relationships between phytoplankton growth and zooplankton grazing. These relationships are applied to two common grazing response functions in order to deduce the mathematical constraints that the parameters of these functions must obey to allow the dominance of the lower growth rate competitor. To assess the usefulness of the deduced relationships in a more general framework, the results are applied in the context of a multispecies ecosystem model (ERSEM).
Downloads
References
Anderson T.R., Gentleman W.C., Sinha B. 2010. Influence of grazing formulations on the emergent properties of a complex ecosystem model in a global ocean general circulation model. Progr. Oceanogr. 87(1-4): 201-213. http://dx.doi.org/10.1016/j.pocean.2010.06.003
Armstrong R.A. 1994. Grazing limitation and nutrient limitation in marine ecosystems: Steady state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39(3): 597-608. http://dx.doi.org/10.4319/lo.1994.39.3.0597
Armstrong R.A. 2003. A hybrid spectral representation of phytoplankton growth and zooplancton response: The "control rod" model of plankton interaction. Deep Sea Res. Part II 50: 2895-2916. http://dx.doi.org/10.1016/j.dsr2.2003.07.003
Baretta J., Baretta-Bekker J. 1997. Special issue: European regional seas ecosystem model II. J. Sea Res. 38: 169-413. http://dx.doi.org/10.1016/S1385-1101(97)00054-3
Baretta J.W., Ebenhöh W., Ruardij P. 1995. The European regional seas ecosystem model: a complex marine ecosystem model. Neth. J. Sea Res. 33: 233-246. http://dx.doi.org/10.1016/0077-7579(95)90047-0
Baretta-Bekker J.G., Baretta J., Rasmussen E. 1995. The microbial food web in the European regional seas ecosystem model. Neth. J. Sea Res. 33: 363-379. http://dx.doi.org/10.1016/0077-7579(95)90053-5
Bell T. 2002. The ecological consequences of unpalatable prey: phytoplankton response to nutrient and predator additions. Oikos 99(1): 59-68. http://dx.doi.org/10.1034/j.1600-0706.2002.990106.x
Buskey E., Hyatt C. 1995. Effects of the Texas (USA) 'brown tide' alga on planktonic grazers. Mar. Ecol. Prog. Ser. 126: 285-292. http://dx.doi.org/10.3354/meps126285
Cropp R., Norbury J. 2013. Modelling plankton ecosystems and the Library of Lotka. In: Blackford J., Allen I., et al., Advances in Marine Ecosystem Modelling Research (III). J. Mar. Syst. 125: 3-13. http://dx.doi.org/10.1016/j.jmarsys.2012.08.005
Ebenhöh W., Baretta-Bekker J., Baretta J. 1997. The primary production module in the marine ecosystem model ERSEM II, with emphasis on the light forcing. J. Sea Res. 38: 173-193. http://dx.doi.org/10.1016/S1385-1101(97)00043-9
Flynn K.J. 2002. Toxin production in migrating dinoagellates: a modelling study of PSP producing alexandrium. Harmful Algae, 1: 147-155. http://dx.doi.org/10.1016/S1568-9883(02)00028-8
Flynn K.J. 2010. Do external resource ratios matter? Implications for modelling eutrophication events and controlling harmful algal blooms. J. Mar. Syst. 83: 170-180. http://dx.doi.org/10.1016/j.jmarsys.2010.04.007
Flynn K.J., Iringoien X. 2009. Why aldehyde-induced insidious effects cannot be considered as a diatom defence mechanism against copepods. Mar. Ecol. Prog. Ser. 377: 79-89. http://dx.doi.org/10.3354/meps07865
Flynn K.J., Davidson K., Cunningham A. 1996. Prey selection and rejection by a microflagellate; implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol. 196: 357-372. http://dx.doi.org/10.1016/0022-0981(95)00140-9
Gentleman W.C., Neuheimer A.B. 2008. Functional responses and ecosystem dynamics: how clearance rates explain the influence of satiation, food-limitation and acclimation. J. Plank. Res. 30: 1215-1231. http://dx.doi.org/10.1093/plankt/fbn078
Gentleman W., Leising A., Frost B., et al. 2003. Functional responses for zooplankton feeding on multiple resources: a critical review of assumed biological dynamics. Deep Sea Res. Part II 50: 2847-2875. http://dx.doi.org/10.1016/j.dsr2.2003.07.001
Grover J.P. 1995. Competition, herbivory, and enrichment: nutrient-based models for edible and inedible plants. Am. Nat. 145(5): 746-774. http://dx.doi.org/10.1086/285766
Guisande C., Frangópulos M., Maneiro I., et al. 2002. Ecological advantages of toxin production by the dinoflagellate Alexandrium minutum under phosphorus limitation. Mar. Ecol. Prog. Ser. 225: 169-176. http://dx.doi.org/10.3354/meps225169
Holling C. 1959. Some characteristics of simple types of predation and parasitism. Can. Entom. 91: 385-398. http://dx.doi.org/10.4039/Ent91385-7
Holt R., Grover J., Tilman D. 1994. Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am. Nat. 144(5): 741-771. http://dx.doi.org/10.1086/285705
Irigoien X., Flynn K.J., Harris R.P. 2005. Phytoplankton blooms: a loophole in microzooplankton grazing impact? J. Plankton Res. 27: 313-321. http://dx.doi.org/10.1093/plankt/fbi011
Jessup C.M., Bohannan B.J.M. 2008. The shape of an ecological trade-off varies with environment. Ecol. Let. 11: 947-959. http://dx.doi.org/10.1111/j.1461-0248.2008.01205.x PMid:18557986
Kierstead H., Slobodkin L. 1953. The size of water masses containing plankton blooms. J. Mar. Res. 12: 141-147.
Kretzschmar M., Nisbet R., MacCauley E. 1993. A predator-prey model for zooplankton grazing on competing algal populations. Theor. Popul. Biol. 44: 32-66. http://dx.doi.org/10.1006/tpbi.1993.1017
Leibold M.A. 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134: 922-949. http://dx.doi.org/10.1086/285022
Leibold M.A. 1996. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am. Nat. 147: 784-812. http://dx.doi.org/10.1086/285879
Leising A., Horner R., Pierson J., et al. 2005. The balance between microzooplankton grazing and phytoplankton growth in a highly productive estuarine fjord. Progr. Oceanogr. 67: 366-383. http://dx.doi.org/10.1016/j.pocean.2005.09.007
Litchman E., Klausmeier C. 2008. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39: 615-639. http://dx.doi.org/10.1146/annurev.ecolsys.39.110707.173549
Maestrini S., Granéli E. 1991. Environmental conditions and ecophysiological mechanisms which led to the 1988 Chrysochromulina polylepis bloom: an hypothesis. Ocean. Acta 14: 397-413.
Margalef R., Estrada M., Blasco D. 1979. Functional morphology of organisms involved in red tides, as adapted do cecaying turbulence. In: Taylor D.L. and Sliger H.H. (eds), Toxic dinoagellate blooms. Elsevier, North Holland, pp. 315-320.
May R.M. 1974. Stability and Complexity in Model Ecosystems. Princeton University Press. 263 pp.
Mitra A., Flynn K. 2005. Predator-prey interactions: is 'ecological stoichiometry' sufficient when good food goes bad? J. Plankton Res. 27: 393-399. http://dx.doi.org/10.1093/plankt/fbi022
Mitra A., Flynn K. 2006. Promotion of harmful algal blooms by zooplankton predatory activity. Biol. Lett. 2: 194-197. http://dx.doi.org/10.1098/rsbl.2006.0447 PMid:17148360 PMCid:PMC1618909
Murray J. 1989. Mathematical Biology. Springer, Berlin. http://dx.doi.org/10.1007/978-3-662-08539-4
Pätsch J., Radach G. 1997. Long-term simulation of the eutrophication of the North Sea: temporal development of nutrients, chlorophyll and primary production in comparison to observations. J. Sea Res. 38: 275-310. http://dx.doi.org/10.1016/S1385-1101(97)00051-8
Pitchford J., Brindley J. 1999. Iron limitation, grazing pressure and oceanic high nutrient-low chlorophyll (HNLC) regions. J. Plankton Res. 21: 525-547. http://dx.doi.org/10.1093/plankt/21.3.525
Radach G., Pätsch J. 1997. Climatological annual cycles of nutrients and chlorophyll in the North Sea. J. Sea Res. 38: 231-248. http://dx.doi.org/10.1016/S1385-1101(97)00048-8
Sailley S., Vogt M., Doney S., et al. 2013. Comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecol. Modell. 261-262: 43-57. http://dx.doi.org/10.1016/j.ecolmodel.2013.04.006
Schaffer W.M. 1981. Ecological Abstraction: The Consequences of Reduced Dimensionality in Ecological Models. Ecol. Monogr. 51: 383-401. http://dx.doi.org/10.2307/2937321
Smayda T.J., Reynolds C.S. 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoagellate blooms. J. Plankton Res. 23(5): 447-461. http://dx.doi.org/10.1093/plankt/23.5.447
Solé J., Estrada M., García-Ladona E. 2006a. Biological controls of Harmful Algal Blooms: A modelling study. J. Mar. Syst. 61: 165-179. http://dx.doi.org/10.1016/j.jmarsys.2005.06.004
Solé J., García-Ladona E., Estrada M. 2006b. The role of selective predation in Harmful Algal Blooms. J. Mar. Syst. 62: 46-64. http://dx.doi.org/10.1016/j.jmarsys.2006.04.002
Steele J. 1974. The structure of marine ecosystems. Harvard University Press. http://dx.doi.org/10.4159/harvard.9780674592513
Teramoto E., Kawasaki K., Shigesada N. 1979. Switching effect of predation on competitive prey species. J. Theor. Biol. 79: 303-315. http://dx.doi.org/10.1016/0022-5193(79)90348-5
Tillmann U., Hesse K., Colijn F. 2000. Planktonic primary production in the German Wadden Sea. J. Plankton Res. 22: 1253-1276. http://dx.doi.org/10.1093/plankt/22.7.1253
Touzet N., Franco J., Raine R. 2007. Influence of inorganic nutrition on growth and PSP toxin production of Alexandrium minutum (Dinophyceae) from Cork Harbour, Ireland. Toxicon 50: 106-119. http://dx.doi.org/10.1016/j.toxicon.2007.03.001 PMid:17452045
Truscott J. 1995. Environmental forcing of simple plankton models. J. Plankton Res. 17: 2207-2232. http://dx.doi.org/10.1093/plankt/17.12.2207
Truscott J., Brindley J. 1994. Ocean plankton populations as excitable media. Bull. Math. Biol. 56: 981-998. http://dx.doi.org/10.1007/BF02458277
van Donk E. 1997. Defenses in phytoplankton against grazing induced by nutrient limitation, UV-B stress and infochemicals. Aq. Ecol. 31: 53-58. http://dx.doi.org/10.1023/A:1009951622185
Vichi M., Pinardi N., Masina S. 2007. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory. J. Mar. Syst. 64: 89-109. http://dx.doi.org/10.1016/j.jmarsys.2006.03.006
Wyatt T., Horwood J. 1973. Model which generates red tides. Nature 244: 238-240. http://dx.doi.org/10.1038/244238a0
Yoshida T., Hairston N.H., Ellner S. 2004. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proc. R. Soc. London, 271: 1947-1953. http://dx.doi.org/10.1098/rspb.2004.2818 PMid:15347519 PMCid:PMC1691804
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.