Scientia Marina, Vol 78, No 1 (2014)

Influence of sea-bottom temperature and depth on swept area estimation from trawl surveys


https://doi.org/10.3989/scimar.03819.24A

Jure Brčić
University of Split, University Department of Marine Studies, Croatia

Federica Grilli
National Research Council (CNR), Institute of Marine Sciences (ISMAR), Fisheries Section, Italy

Antonello Sala
National Research Council (CNR), Institute of Marine Sciences (ISMAR), Fisheries Section, Italy

Abstract


The methodological approach to data collection and analysis in Mediterranean bottom trawl surveys has changed considerably since their beginnings in the mid-1980s. The introduction of new technologies in surveys greatly improved knowledge on trawl underwater geometry, but also raised a question on the reliability of the data obtained. The most commonly used trawl monitoring systems in the Mediterranean use the constant speed of sound when calculating horizontal distance from one sensor to another. However, the speed of the sound in seawater is not constant because it depends on water temperature, pressure, and salinity. This is known to affect the performance of the horizontally transmitting sonars, and it is reasonable to assume that unless it is properly compensated for, the readings from trawl monitoring systems can be incorrect, resulting in biased swept area estimates, and hence potentially producing bias in abundance estimates. In the knowledge that speed of sound depends on temperature, salinity and pressure, the Del Grosso (1974) equation was used to calculate the compensation coefficient for a series of theoretical depth and temperature data. A simple model is proposed in the current paper for the manual correction of the horizontal net opening and swept area estimates. Temperature and depth data obtained from the MEDATLAS project are used to show seasonal and spatial variation in the near-bottom speed of sound, and the results demonstrate that, unless compensated for properly, the error in the horizontal net spread ranges from –1.5% to 2.9%.

Keywords


swept area; bottom trawl survey; net opening; Mediterranean Sea

Full Text:


HTML PDF XML

References


Adani M., Dobricic S., Pinardi N. 2011. Quality Assessment of a 1985–2007 Mediterranean Sea Reanalysis. J. Atmos. Ocean. Tech. 28: 569-589. http://dx.doi.org/10.1175/2010JTECHO798.1

Artegiani A., Bregant D., Paschini E., Pinardi N., Raicich F., Russo A. 1997. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure. J. Phys. Oceanogr. 27: 1492-1514. http://dx.doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2

Bertrand J.A., Gil de Sola L., Papaconstantinou, C., Relini, G., Souplet, A. 2002. The general specifications of the Medits surveys. Sci. Mar. 66 (Suppl. 2): 9-17.

Chen C.-T., Millero F.J. 1977. Speed of sound in seawater at high pressures. J. Acoust. Soc. Am. 62: 1129-1135. http://dx.doi.org/10.1121/1.381646

Coppens A.B. 1981. Simple equations for the speed of sound in Neptunian waters. J. Acoust. Soc. Am. 69: 862-863. http://dx.doi.org/10.1121/1.385486

Del Grosso V.A. 1974. New equation for the speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Am. 56: 1084-1091. http://dx.doi.org/10.1121/1.1903388

Dremière P.Y., Fiorentini L., Cosimi G., Leonori I., Sala A., Spagnolo, A., 1999. Escapement from the main body of the bottom trawl used for the Mediterranean International Trawl Survey (MEDITS). Aquat. Living Resour. 12(3): 207-217. http://dx.doi.org/10.1016/S0990-7440(00)88471-5

Dushaw B.D., Worcester P.F., Cornuelle B.D., Howe B.M. 1993. On equations for the speed of sound in sea water. J. Acoust. Soc. Am. 93(1): 255-275. http://dx.doi.org/10.1121/1.405660

Eigaard O.R., Rihan D., Graham N., Sala A., Zachariassen K. 2011. Improving fishing effort descriptors: Modelling engine power and gear-size relations of five European trawl fleets. Fish. Res. 110: 39-46. http://dx.doi.org/10.1016/j.fishres.2011.03.010

Fiorentini L., Dremière P.Y., Leonori I., Sala A., Palumbo V. 1999. Efficiency of the bottom trawl used for the Mediterranean International Trawl Survey (MEDITS). Aquat. Living Resour. 12(3): 187-205. http://dx.doi.org/10.1016/S0990-7440(00)88470-3

Fiorentini L., Sala A., Hansen K., Cosimi G., Palumbo V. 2004. Comparison between model testing and full-scale trials of new trawl design for Italian bottom fisheries. Fish. Sci. 70: 349-359. http://dx.doi.org/10.1111/j.1444-2906.2004.00813.x

Godø O.R. 1998. What can technology offer the future fisheries scientist – Possibilities for obtaining better estimates of stock abundance by direct observations. J. Northwest Atl. Fish. Sci. 23: 105-131. http://dx.doi.org/10.2960/J.v23.a7

Godø O.R., Engås A. 1989. Swept area variation with depth and its influence on abundance indices of groundfish from trawl surveys. J. Northwest Atl. Fish. Sci. 9: 133-139. http://dx.doi.org/10.2960/J.v9.a12

Hall J.B. 2000. Principles of naval weapons systems. Kendall/Hunt Publishing, 358 pp.

ICES. 2009. Report of the Study Group on Survey Trawl Standardisation (SGSTS), by correspondence. ICES CM 2009/FTC:09, 127 pp.

Jukic-Peladic S., Vrgoc N., Krstulovic-Sifner S., Piccinetti C., Piccinetti-Manfrin G., Marano G., Ungaro N. 2001. Long-term changes in demersal resources of the Adriatic Sea: comparison between trawl surveys carried out in 1948 and 1998. Fish. Res. 53: 95-104. http://dx.doi.org/10.1016/S0165-7836(00)00232-0

Kotwicki S., Martin M.H., Laman E.A. 2011. Improving area swept estimates from bottom trawl surveys. Fish. Res. 110: 198-206. http://dx.doi.org/10.1016/j.fishres.2011.04.007

Legović T., Klanjšček J., Geček S. 2010. Maximum sustainable yield and species extinction in ecosystems. Ecol. Model. 221: 1569-1574. http://dx.doi.org/10.1016/j.ecolmodel.2010.03.024

Leroy C.C. 2001. The speed of sound in pure and Neptunian water. Handbook of elastic properties of solids, liquids, and gases. Academic, New York, Vol. IV, Chap. 2: 23-81.

Leroy C.C., Parthiot F. 1998. Depth-pressure relationship in the oceans and seas. J. Acoust. Soc. Am. 103: 1346-1352. http://dx.doi.org/10.1121/1.421275

Leroy C.C., Robinson S.P., Goldsmith M.J. 2008. A new equation for the accurate calculation of sound speed in all oceans J. Acoust. Soc. Am. 124(5): 2774-2782. http://dx.doi.org/10.1121/1.2988296 PMid:19045765

Lucchetti A., Sala A. 2010. An overview of loggerhead sea turtle (Caretta caretta) bycatch and technical mitigation measures in the Mediterranean Sea. Rev. Fish Biol. Fisher., 20(2), 141-161. http://dx.doi.org/10.1007/s11160-009-9126-1

Lucchetti A., Sala A. 2012. Impact and performance of Mediterranean fishing gear by side-scan sonar technology. Can. J. Fish. Aquat. Sci. 69: 1806-1816. http://dx.doi.org/10.1139/f2012-107

MEDAR Group. 2002. MEDATLAS/2002 database. Mediterranean and Black Sea database of temperature salinity and bio-chemical parameters. Climatological Atlas. IFREMER Edition (4 Cdroms).

Meinen C.S., Watts D.R. 1997. Further evidence that the sound-speed algorithm of Del Grosso is more accurate than that of Chen and Millero. J. Acoust. Soc. Am. 102(4): 2058-2062. http://dx.doi.org/10.1121/1.419655

Pike J.M., Beiboer F.L. 1993. A comparison between algorithms for the speed of sound in seawater. The Hydrographic Society, Special Publication no. 34.

Prat J., Antonijuan J., Folch A., Sala A., Lucchetti A., Sardà F., Manuel A. 2008. A simplified model of the interaction of the trawl warps, the otterboards and netting drag. Fish. Res. 94: 109-117. http://dx.doi.org/10.1016/j.fishres.2008.07.007

R Core Team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Russo A., Artegiani A. 1996. Adriatic Sea hydrography. Sci. Mar. 60(Suppl. 2): 33-43.

Sala A., Prat J., Antonijuan J., Lucchetti A. 2009. Performance and impact on the seabed of an existing- and an experimental-otterboard: Comparison between model testing and full-scale sea trials. Fish. Res. 100: 156-166. http://dx.doi.org/10.1016/j.fishres.2009.07.004

Sarkar D. 2008. Lattice: multivariate data visualization with R. Springer, New York. ISBN 978-0-387-75968-5. http://dx.doi.org/10.1007/978-0-387-75969-2

Saville A. 1977. Survey methods of appraising fishery resources. FAO Fish. Tech. Pap. 171: 76

Schlitzer R. 2011. Ocean Data View. http://odv.awi.de

Simmonds E.J., MacLennan D.N. 2005. Fisheries Acoustics: Theory and Practice, 2nd edn. Blackwell Science, London, 437 pp. http://dx.doi.org/10.1002/9780470995303

Sparre P., Venema S.C. 1998. Introduction to tropical fish stock assessment. Part 1. Manual. FAO Fish. Tech. Pap. No. 306.1, Rev. 2, 407 pp.

Speisberger J.L. 1993. Is Del Grosso's sound-speed algorithm correct? J. Acoust. Soc. Am. 93(4): 2235-2237. http://dx.doi.org/10.1121/1.406686

Speisberger J.L., Metzger K. 1991. New estimates of sound speed in water. J. Acoust. Soc. Am. 89(4): 1697-1700. http://dx.doi.org/10.1121/1.401002

Vargas-Yá-ez M., Mallard, E., Rixen, M., Zunino, P., García-Martínez, M.C., Moya, F. 2012. The effect of interpolation methods in temperature and salinity trends in the Western Mediterranean. Medit. Mar. Sci., 13/1: 118-125.

Wong G.S.K., Zhu S. 1995. Speed of sound in seawater as a function of salinity, temperature and pressure. J. Acoust. Soc. Am. 97: 1732-1736. http://dx.doi.org/10.1121/1.413048

Zimmermann M., Wilkins M.E., Weinberg K.L., Lauth R.R., Shaw F.R. 2003. Influence of improved performance monitoring on the consistency of a bottom trawl survey. ICES J. Mar. Sci. 60: 818-826. http://dx.doi.org/10.1016/S1054-3139(03)00043-2




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es