Scientia Marina, Vol 76, No 4 (2012)

Preliminary indication of ontogenetic and spatial variations in the whole otolith isotopic and elemental signatures of Solea solea in the Gulf of Lions (NW Mediterranean)


https://doi.org/10.3989/scimar.03648.09B

Fabien Morat
Aix Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO) , France

Raymonde Lecomte-Finiger
Université de Perpignan , France

Dominique Blamart
Laboratoire des Sciences du Climat et de l’Environnement , France

Michel Robert
Université de La Rochelle, Institut du littoral et de l’environnement , France

Yves Letourneur
Université de la Nouvelle-Calédonie , French Polynesia

Abstract


Knowledge of fish life cycles is important for exploited species. In the Mediterranean Sea, catches of common sole (Solea solea) have fluctuated widely since the 1970s. Solea solea displays an ontogenetic shift in habitat: sole larvae are marine, juveniles inhabit shallow marine waters and coastal lagoons and adults inhabit deeper marine waters. Although the results of this study were obtained using only a small set of individuals, the otolith elemental composition and isotopic ratios were investigated for the three life stages (post-larval, juvenile and adult) in order to acquire a better knowledge of the variability in environmental conditions experienced by the common sole at each life stage in the NW Mediterranean. Moreover, this study provides the first evaluation of the potential of whole otolith microchemistry for investigating habitat connectivity in sole populations from the Gulf of Lions. The elemental and isotopic signatures of otoliths of post-larvae captured in various environments appear to show variations related to the River Rhône inputs (high Ba/Ca and low Sr/Ca ratios). Juveniles appear to show significant variations in otolith elemental and isotopic compositions depending not only on the physico-chemical properties of water in the nurseries they inhabit (Rhône River, Thau or Mauguio lagoons), but also as a result of variations in the chemical composition of their surrounding sediments and in their benthic prey. Adults exhibit otolith differences for isotopic ratios only, which is probably linked to the River Rhône inputs. Finally, several significant relationships were observed between otolith elemental composition and fish size in specimens captured at the River Rhône mouth. However, these variations seem to be an indication of the composition acquired in each environment rather than a sign of ontogeny.

Keywords


flatfish; otolith microchemistry; stable isotope; coastal lagoon; River Rhône

Full Text:


PDF

References


Amiard J-C., Geffard A., Amiard-Triquet C., Crouzet C. 2007. Relationship between the lability of sediment-bound metals (Cd, Cu, Zn) and their bioaccumulation in benthic invertebrates. Estuar. Coast. Shelf Sci. 72: 511-521. http://dx.doi.org/10.1016/j.ecss.2006.11.017

Aucour A-M., Sheppard S.M.F., Savoye R. 2003. d13C of fluvial mollusk shells (Rhône River): A proxy for dissolved inorganic carbon? Limnol. Oceanogr. 48: 2186-2193. http://dx.doi.org/10.4319/lo.2003.48.6.2186

Blamart D., Escoubeyrou K., Juillet-Leclerc A., Ouahdi R., Lecomte-Finiger R. 2002. Composition isotopique d18O-d13C des otolithes des populations de poissons récifaux de Taiaro (Tuamotu, Polynésie française): implications isotopiques et biologiques. C. R. Biol. 325: 99-106. http://dx.doi.org/10.1016/S1631-0691(02)01419-1

Bradbury I.R., Campana S.E., Bentzen P. 2008. Otolith elemental composition and adult tagging reveal spawning site fidelity and estuarine dependency in rainbow smelt. Mar. Ecol. Prog. Ser. 368: 255-268. http://dx.doi.org/10.3354/meps07583

Campana S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188: 263-297. http://dx.doi.org/10.3354/meps188263

Campana S.E., Casselman J.L. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50: 1062-1083. http://dx.doi.org/10.1139/f93-123

Campana S.E., Chouinard G.A., Hanson J.M., Fréchet A. 1999. Mixing and migration of overwintering Atlantic cod (Gadus morhua) stocks near the mouth of the Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 56: 1873-1881.

Campana S.E., Chouinard G.A., Hanson J.M., Fréchet A., Brattey J. 2000. Otolith elemental fingerprints as biological tracers of fish stocks. Fish. Res. 46: 343-357. http://dx.doi.org/10.1016/S0165-7836(00)00158-2

Campana S.E., Gagné J.A., McLaren J. 1995. Element fingerprinting of fish otoliths using ID-ICPMS. Mar. Ecol. Prog. Ser. 122: 115-120. http://dx.doi.org/10.3354/meps122115

Campana S.E., Neilson J.D. 1985. Microstructure of fish otoliths. Can. J. Fish. Aquat. Sci. 42: 1014-1031 http://dx.doi.org/10.1139/f85-127

Campillo A. 1992. Les pêcheries françaises de Méditerranée: synthèse des connaissances. IFREMER, RIDRV-92/019- RH, Sète, France, 206 pp.

Campillo A., Aldebert Y., Bigot J.L., Liorzou B. 1989. Donnée de distribution des principales espèces commerciales du Golfe du Lion. Rapports internes de la direction des ressources vivantes de l'IFREMER, DRV-89.041RH/, Sète, France, 175 pp. PMCid :2423532

Coplen T.B., Kendall C., Hopple J. 1993. Comparison of stable isotope reference samples. Nature 302: 236-238. http://dx.doi.org/10.1038/302236a0

Cuveliers E.L., Geffen A.J., Guelinckx J., Raeymaekers J.A.M., Skadal J., Volckaert F.A.M., Maes G.E. 2010. Microchemical variation in juvenile Solea solea otoliths as a powerful tool for studying connectivity in the North Sea. Mar. Ecol. Prog. Ser. 401: 211-220. http://dx.doi.org/10.3354/meps08439

Darnaude A. 2003. Apports fluviaux en zone côtière et réseaux trophiques marins benthiques: transfert de matière organique particulaire terrigène jusqu'aux poissons plats au large du Rhône. Thèse de Doctorat, spécialité Biosciences de l'Environnement, Chimie et Santé, Université de la Méditerranée, Marseille, France, 373 pp.

Darnaude A.M. 2005. Fish ecology and terrestrial carbon use in coastal areas: implications for marine fish production. J. Anim. Ecol. 74: 864-876. http://dx.doi.org/10.1111/j.1365-2656.2005.00978.x

Darnaude A.M., Harmelin-Vivien M.L., Salen-Picard C. 2001. Food partitioning among flatfish (Pisces: Pleuronectiforms) juveniles in a Mediterranean coastal shallow sandy area. J. Mar. Biol. Assoc. U.K. 81: 119-127. http://dx.doi.org/10.1017/S0025315401003460

Darnaude A.M., Salen-Picard C., Polunin N.V.C., Harmelin-Vivien M.L. 2004. Trophodynamic linkage between river runoff and coastal fishery yield elucidated by stable isotope data in the Gulf of Lions (NW Mediterranean). Oecologia 138: 325-332. http://dx.doi.org/10.1007/s00442-003-1457-3 PMid:14689296

Demaneche S., Merrien C., Berthou P., Lespagnol P. 2009. Rapport R3, Méditerranée continentale, échantillonnage des marées au débarquement. Méthode d'élévation et évaluation des captures et de l'effort de pêche des flottilles de la façade Méditerranée continentale sur la période 2007-2008. Ifremer, France, 217 pp.

Dierking J., Morat F., Letourneur Y., Harmelin-Vivien M. 2012. Fingerprints of lagoonal life: Migration of the marine flatfish Solea solea assessed by stable isotopes and otolith microchemistry. Estuar. Coast. Shelf Sci. 104-105: 23-32. http://dx.doi.org/10.1016/j.ecss.2011.03.018

Duport E., Gilbert F., Poggiale J.C., Dedieu K., Rabouille C., Stora G. 2007. Benthic macrofauna and sediment reworking quantification in contrasted environments in the Thau Lagoon. Estuar. Coast. Shelf Sci. 72: 522-533. http://dx.doi.org/10.1016/j.ecss.2006.11.018

Farrell J., Campana S.E. 1996. Regulation of calcium and strontium deposition on the Otoliths of Juvenile Tilapia, Oreochromis niloticus. Comp. Biochem. Physiol. 115A: 103-109. http://dx.doi.org/10.1016/0300-9629(96)00015-1

Fowler A.J., Campana S.E., Jones C.M., Thorrold S.R. 1995 Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution-based ICPMS. Can. J. Fish. Aquat. Sci. 52: 1421-1430. http://dx.doi.org/10.1139/f95-137

Friendland K.D., Reddin D.G. 1994. Use of otolith morphology in stock discrimination of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 51: 91-98. http://dx.doi.org/10.1139/f94-011

Gaertner J.C., Chessel D., Bertrand J. 1998. Stability of spatial structures of demersal assemblages: a multiple approach. Aquat. Living Resour. 11: 75-85. http://dx.doi.org/10.1016/S0990-7440(98)80063-6

Gallahar N.K., Kingsford M.J. 1996. Factors influencing Sr/Ca ratios in otoliths of Girella elevatar: an experimental investigation. J. Fish Biol. 48: 161-131.

Garcia S.M., Cochrane K., Van Santen G., Christy F. 1999. Towards sustainable fisheries: a strategy for FAO and the World Bank. Ocean Coast. Manage. 42: 369-398. http://dx.doi.org/10.1016/S0964-5691(99)00026-5

Gillanders B.M. 2002. Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Mar. Ecol. Prog. Ser. 240: 215-223. http://dx.doi.org/10.3354/meps240215

Gillanders B.M., Kingsford M.J. 1996. Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Mar. Ecol. Prog. Ser. 141: 13-20. http://dx.doi.org/10.3354/meps141013

Gillanders B.M., Kingsford M.J. 2000. Elemental fingerprints of otoliths of fish may distinguish estuarine 'nursery' habitats. Mar. Ecol. Prog. Ser. 201: 276-286. http://dx.doi.org/10.3354/meps201273

Hamer P.A., Jenkins G.P., Coutin P. 2006. Barium variation in Pagrus auratus (Sparidae) otoliths: A potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuar. Coast. Shelf Sci. 68: 686-702. http://dx.doi.org/10.1016/j.ecss.2006.03.017

Høie H., Andersson C., Folkvord A., Karlsen Ø. 2004. Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Mar. Biol. 144: 1039-1049. http://dx.doi.org/10.1007/s00227-003-1275-5

Ifremer. 2004. Réseau de suivi lagunaire du Languedoc-Roussillon: Bilan des résultats 2003. Rapport RSL 04-2004. 226 pp.

Ifremer. 2008. Réseau de suivi lagunaire du Languedoc-Roussillon: Bilan des résultats 2007. Rapport RSL 08-2008. 363 pp.

Kalish J.M. 1989. Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J. Exp. Mar. Biol. Ecol. 132: 151-178. http://dx.doi.org/10.1016/0022-0981(89)90126-3

Kalish J.M. 1991. Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Mar. Biol. 110: 37-47. http://dx.doi.org/10.1007/BF01313090

Kemp W.M., Boynton W.R., Adolf J.E., Boesch D.F., Boicourt W.C., Brush G., Cornwell J.C., Fisher T.R., Glibert P.M., Hagy J.D., Harding L.W., Houde E.D., Kimmel D.G., Miller W.D., Newell R.I.E., Roman M.R., Smith E.M., Stevenson J.C. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303: 1-29. http://dx.doi.org/10.3354/meps303001

Kerr L.A, Secor D., Kraus R.T. 2007. Stable isotope (δ13C and δ18O) and Sr/Ca composition of otoliths as proxies for environmental salinity experienced by an estuarine fish. Mar. Ecol. Prog. Ser. 348: 245-253. http://dx.doi.org/10.3354/meps07064

Leakey C.D.B., Attrill M.J., Fitzsimons M.F. 2009. Multi-element otolith chemistry of juvenile sole (Solea solea), whiting (Merlangius merlangus) and European seabass (Dicentrarchus labrax) in the Thames Estuary and adjacent coastal regions. J. Sea Res. 61: 268-274. http://dx.doi.org/10.1016/j.seares.2008.12.002

Lecomte-Finiger R. 1999. L'otolithe : la "boîte noire" des Téléostéens. Ann. Biol. 38: 107-122.

Limburg K.E. 1995. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Mar. Ecol. Prog. Ser. 119: 25-35. http://dx.doi.org/10.3354/meps119025

Mercier L., Mouillot D., Bruguier O., Vigliola L., Darnaude A. 2012. Multi-element otolith fingerprints unravel sea-lagoon lifetime migrations of gilthead sea bream Sparus aurata. Mar. Ecol. Prog. Ser. 444: 175-194. http://dx.doi.org/10.3354/meps09444

Mérigot B., Letourneur Y., Lecomte-Finiger R. 2007. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics shape analysis. Mar. Biol. 151: 997-1008. http://dx.doi.org/10.1007/s00227-006-0549-0

Metzger E., Simonucci C., Viollier E., Sarazin G., Prévot F., Jézéquel D. 2007. Benthic response to shellfish farming in Thau lagoon: Pore water signature. Estuar. Coast. Shelf Sci. 72: 406-419. http://dx.doi.org/10.1016/j.ecss.2006.11.011

Miralles J., Arnaud M., Radakovitch O., Marion C., Cagnat X. 2006. Radionuclide deposition in the Rhône River Prodelta (NW Mediterranean Sea) in response to the December 2003 extreme flood. Mar. Geol. 234: 179-189. http://dx.doi.org/10.1016/j.margeo.2006.09.004

Morat F., Letourneur Y., Nérini D., Banaru D., Batjakas I.E. 2012. Discrimination of red mullet populations (Teleostean, Mullidae) along multi-spatial and ontogenetic scales within the Mediterranean basin on the basis of otolith shape analysis. Aquat. Living Resour. 25: 27-39. http://dx.doi.org/10.1051/alr/2011151

Mouillot D., Gaillard S., Aliaume C., Verlaque M., Belsher T., Troussellier M., Do Chi T. 2005. Ability of taxonomic diversity indices to discriminate coastal lagoon environments based on macrophyte communities. Ecol. Indic. 5: 1-17. http://dx.doi.org/10.1016/j.ecolind.2004.04.004

Myers R.A., Worm B. 2003. Rapid worldwide depletion of predatory fish communities. Nature 423: 280-283. http://dx.doi.org/10.1038/nature01610 PMid:12748640

Nixon S. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199-219.

Panfili J., de Pontual H., Troadec H., Wright P.J. (eds). 2002. Manuel de sclérochronologie des poissons. Coédition Ifremer- IRD, France, 464 pp.

Péna G., Picot B. 1991. Métaux traces dans les sédiments d'une lagune méditerranéenne: l'étang de Thau. Oceanol. Acta 14: 459-471.

Pothin K., Gonzalez-Salas C., Chabanet P., Lecomte-Finiger R. 2006. Distinction between Mulloidichthys flavoneatus juvenile from Reunion Island and Mauritius Island (South-West Indian Ocean) based on otolith morphometrics. J. Fish Biol. 68: 1-16.

Quéro J.C., Vayne J.J. 1997. Les poissons de mer des pêches françaises, identification, inventaire et répartition de 209 espèces. Delachaux et Niestlé (eds), Paris, France, 304 pp.

Ramsay J.O., Silveman B.W. 2005. Functional data analysis. Springer, New-York, USA, 2nd edition, 310 pp.

Reddin D.G., Stansbury D.E., Short P.B. 1988. Contigent of origin of Atlantic salmon (Salmo salar L.) at West Greenland. J. Cons. Int. Explor. Mer 44: 180-188.

Rooker J.R., Secor D., Zdanowicz V.S., DeMetrio G., Orsi Relini L. 2003. Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fish. Oceanogr. 12: 75-84. http://dx.doi.org/10.1046/j.1365-2419.2003.00223.x

Rooker J.R., Secor D.H., DeMetrio G., Kaufman A.J., Belmonte R.A., Vjekoslav T. 2008a. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368: 231-239. http://dx.doi.org/10.3354/meps07602

Rooker J.R., Secor D.H., DeMetrio G., Schloesser R., Block B.A., Neilson J.D. 2008b. Natal Homing and Connectivity in Atlantic Bluefin Tuna Populations. Science 322: 742-744. http://dx.doi.org/10.1126/science.1161473 PMid:18832611

Rosenberg R., Grémare A., Amouroux J.M., Nilsson H.C. 2003. Benthic habitats in the northwest Mediterranean characterised by sedimentary organics, benthic macrofauna and sediment profile images. Estuar. Coast. Shelf Sci. 57: 297-311. http://dx.doi.org/10.1016/S0272-7714(02)00356-6

Roussiez V., Ludwig W., Monaco A., Probst J.L., Bouloubassi I., Buscail R., Saragoni G. 2006. Sources and sinks of sedimentbound contaminants in the Gulf of Lions (NW Mediterranean Sea): A multi-tracer approach. Contin. Shelf Res. 26: 1843-1857. http://dx.doi.org/10.1016/j.csr.2006.04.010

Salen-Picard C., Darnaude A., Arlhac D., Harmelin-Vivien M.L. 2002. Fluctuations of macrobenthic populations: a link between climate-driven river run-off and sole fishery yields in the Gulf of Lions. Oecologia. 133: 380-388. http://dx.doi.org/10.1007/s00442-002-1032-3

Schwarcz H.P., Gao Y., Campana S.E., Browne D., Knyf M., Brand U. 1998. Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 55: 1798-1806. http://dx.doi.org/10.1139/f98-053

Secor D.H., Rooker J.R. 2000. Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fish. Res. 46: 359-371. http://dx.doi.org/10.1016/S0165-7836(00)00159-4

Solomon C.T., Weber P.K., Cech Jr. J.J., Ingram B.L., Conrad M.E., Machavaram M.V., Pogodina A.R., Franklin R.L. 2006. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can. J. Fish. Aquat. Sci. 63: 79-89. http://dx.doi.org/10.1139/f05-200

Tabouret H., Bareille G., Claverie F., Pécheyran C., Donard O.F.X. 2010. Simultaneous use of strontium: calcium and barium: calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin, South West France. Mar. Environ. Res. 70: 35-45. http://dx.doi.org/10.1016/j.marenvres.2010.02.006 PMid:20338633

Tanner S.E., Vasconcelos R.P., Reis-Santos P., Cabral H.N., Thorrold S.R. 2011. Spatial and ontogenetic variability in the chemical composition of juvenile common sole (Solea solea) otoliths. Estuar. Coast. Shelf Sci. 91: 150-157. http://dx.doi.org/10.1016/j.ecss.2010.10.008

Thorrold S.R., Campana S.E., Jones C.M., Swart P.K. 1997. Factors determining d13C and d18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 61: 2909-2919. http://dx.doi.org/10.1016/S0016-7037(97)00141-5

Titus K., Mosher J.A., Williams B.K. 1984. Chance-corrected classification for use in discriminant analysis: ecological applications. Am. Midl. Nat. 111: 1-7. http://dx.doi.org/10.2307/2425535

Tracey S.R., Lyle J.M., Duhamel G. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res. 77: 138-147. http://dx.doi.org/10.1016/j.fishres.2005.10.013

Vasconcelos R.P., Reis-Santos P., Tanner S., Maia A., Latkoczy C., Günther D., Costa M.J., Cabral H. 2008. Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints. Estuar. Coast. Shelf Sci. 79: 317-327. http://dx.doi.org/10.1016/j.ecss.2008.04.006

Vizzini S., Savona B., Chi T., Mazzola A. 2005. Spatial variability of stable carbon and nitrogen isotope ratios in a Mediterranean coastal lagoon. Hydrobiologia 550: 73-82. http://dx.doi.org/10.1007/s10750-005-4364-2

Zimmerman C.E. 2005. Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids. Can. J. Fish. Aquat. Sci. 62: 88-97. http://dx.doi.org/10.1139/f04-182

Zlokovitz E.R., Secor D.H., Piccoli P.M. 2003. Patterns of migration in Hudson River striped bass as determined by otolith microchemistry. Fish. Res. 63: 245-259. http://dx.doi.org/10.1016/S0165-7836(03)00069-9




Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es