Scientia Marina, Vol 76, No 2 (2012)

Identification of Lessepsian fish species using the sagittal otolith


https://doi.org/10.3989/scimar.03420.18E

Víctor Manuel Tuset
Institut de Ciències del Mar (CSIC), Spain

Ernesto Azzurro
ISPRA, High Institute for Environmental Protection and Research, Italy

Antoni Lombarte
Institut de Ciències del Mar (CSIC), Spain

Abstract


Lessepsian species are marine organisms that enter the Mediterranean through the Suez Canal, a phenomenon that has dramatically increased in recent decades. The present study describes the morphological characteristics of the sagittal otoliths of 22 Lessepsian fish species collected at four locations in the Mediterranean Sea. These structures are commonly used in the identification of species found in the digestive tracts of predators, and their morphological description is mainly needed as a tool for trophic studies. Here we used the Automated Taxon Identification (ATI) system of the AFORO web database to determine the accuracy of classifying Lessepsian fish otoliths compared with otoliths of native Mediterranean species. The otolith contour analysis correctly classified 92.5% of the specimens, showing that these species have otoliths that can be clearly distinguished from native ones. Four different groups of otoliths were identified according to the morphological differences between the otoliths and the ATI analysis results: a) unusual shapes with no similarities to native species; b) unusual shapes with similarities to phylogenetically distant native species; c) common shapes with similarities to phylogenetically close native species; and d) common shapes with morphological characters related to other native congeners, although they are not classified with them.

Keywords


otolith; morphology; fish; Lessepsian species; Mediterranean Sea

Full Text:


PDF

References


Aguirre H., Lombarte A. 1999. Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus. J. Fish Biol. 55: 105-114.

Aronov A., Goren M. 2008. Ecology of the mottled grouper (Mycteroperca rubra) in the eastern Mediterranean. Electronic J. Ichthyol. 2: 43-55

Arellano R.V., Hamerlynck O., Vincx M., Mees J., Hostens K., Gijselinck W. 1995. Changes in the ratio of the sulcus acusticus area to the sagitta area of Pomatoschistus minutus and P. lozanoi (Pisces, Gobiidae). Mar. Biol. 122: 355-360. http://dx.doi.org/10.1007/BF00350868

Assis C.A. 2003. The lagenar otoliths of teosts: their morphology and its application in species identification, phylogeny and systematics. J. Fish. Biol. 62: 1268-1295. http://dx.doi.org/10.1046/j.1095-8649.2003.00106.x

Assis C.A. 2004. Guia para a identificacão de algumas famílias de peixes ósseos de Portugal continental, através da morfología dos seus otólitos sagitta. Câmara Municipal de Cascais, Cascai, 190 pp.

Azzurro E. 2008. The advance of thermophilic fishes in the Mediterranean sea: overview and methodological questions. In: Briand F. (ed.), Climate warming and related changes in Mediterranean marine biota. CIESM Publishers, pp. 39-46.

Azzurro E., Fanelli E., Mostarda E., Catra M., Andaloro F. 2007. Resource partitioning among early colonizing Siganus luridus and native herbivorous fishes at Linosa Island. Evidence from gut-content analysis and stable isotope signatures. J. Mar. Biol. Ass. UK 87: 991-998. http://dx.doi.org/10.1017/S0025315407056342

Bariche M. 2006. Diet of the Lessepsian fishes, Siganus rivulatus and S. luridus (Siganidae) in the eastern Mediterranean: a bibliographic analysis. Cybium 30: 41-49.

Campana S.E. 2004. Photographic atlas of fish otoliths of the Northwest Atlantic ocean. Can. Spec. Publ. Fish. Aquat. Sci. 133: 1-284.

Colmenero A.I., Aguzzi J., Lombarte A., Bozzano A. 2010. Sensory contraints in temporal segregation in two species of anglerfish, Lophius budegassa and L. piscatorius. Mar. Ecol. Prog. Ser. 416: 255-265. http://dx.doi.org/10.3354/meps08766

Eschmeyer W.N., Fricke R. (eds.) 2011. Catalog of Fishes electronic version. http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

Galil B. 2007. Seeing Red: Alien species along the Mediterranean coast of Israel. Aquat. Invas. 2: 281-312. http://dx.doi.org/10.3391/ai.2007.2.4.2

García Rodríguez F.J., De La Cruz A.J. 2011. A comparison of indexes for prey importance inferred from otoliths and cephalopod beaks recovered from pinniped scats. Can. J. Fish. Aquat. Sci. 6: 186-193. http://dx.doi.org/10.3923/jfas.2011.186.193

Golani D. 1993. Trophic adaptation of Red Sea fishes to the eastern Mediterranean environment- review and new data. Israel J. Zool. 39: 391-402.

Golani D. 1994. Niche separation between colonizing and indigenous goatfishes (Mullidae) of the Mediterranean coast of Israel. J. Fish Biol. 44: 503-513. http://dx.doi.org/10.1111/j.1095-8649.1994.tb01332.x

Golani D. 2010. Colonization of the Mediterranean by Red Sea fishes via the Suez Canal – Lessepsian migration. In: Golani D., Appelbaum-Golani B. (eds.), Fish Invasions of the Mediterranean Sea: change and renewal. Pensoft Publishers, pp. 145-188.

Golani D., Sonin O. 1992. New records of the Red Sea fishes, Pterois miles (Scorpaenidae) and Pteragogus pelycus (Labridae) from the Eastern Mediterranean Sea. Jap. J. Ichth. 39: 167-169.

Golani D., Orsi-Relini L., Massuti E., Quignard J.P. 2002. CIESM atlas of exotic species in the Mediterranean. Vol. 1. Fishes. CIESM Publishers, Monaco, 256 pp.

Golani D., Appelbaum-Golani B., Gon O. 2008. Apogon smithi (Kotthaus, 1970) (Teleostei: Apogonidae), a Red Sea cardinalfish colonizing the Mediterranean Sea. J. Fish Biol. 72: 1534-1538. http://dx.doi.org/10.1111/j.1095-8649.2008.01812.x

Granadeiro J.P., Silva M.A. 2000. Use of otoliths and vertebrae to identify and estimate size of preys. Cybium 24: 383-393.

Härkönen T. 1986. Guide to the otoliths of the bony fishes of the Northeast Atlantic. Danbiu ApS., Hellerup, 256 pp.

Lombarte A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Environ. Biol. Fish., 33: 405-410. http://dx.doi.org/10.1007/BF00010955

Lombarte A., Popper A.N. 2004. Quantitative changes in the otolithic organs of the inner ear during the settlement period in European hake (Merluccius merluccius). Mar. Ecol. Prog. Ser. 267: 233-240. http://dx.doi.org/10.3354/meps267233

Lundberg B., Golani D. 1995. Diet adpatations of Lessepsian migrant rabbitfishes, Siganus luridus and S. rivulatus, to the algal ressources of the Mediterranean Coast of Israel. P.S.Z.N.I. Mar. Ecol. 16: 73-89. http://dx.doi.org/10.1111/j.1439-0485.1995.tb00395.x

Mallat S. 1989. A Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11: 674--693. http://dx.doi.org/10.1109/34.192463

Moreno-López A., Tuset V.M., González J.A., García-Díaz M.M. 2002. Feeding ecology of Serranus scriba (Osteichthyes, Serranidae) in the marine reserve of Lanzarote (Canary Islands). Bol. Mus. Municipal do Funchal 53: 5-17.

Motta P.J., Norton S.F., Luczkovich J.J. 1995. Perspectives on the ecomorphology of bony fishes. Environ. Biol. Fish. 44: 11-20. http://dx.doi.org/10.1007/BF00005904

Nelson J.S. 2006. Fishes of the world. 4th ed. John Wiley and Sons, Hoboken, New Jersey, 601 pp.

Nolf D. 1985. Otolithi piscium. In: Schultze H.P. (ed.), Handbook of Paleoichthyology. Gustav Fischer Verlag, Stuttgart, 145 pp.

Oliverio M., Taviani M. 2003. The eastern Mediterranean Sea: tropical invasions and niche availability in a “Godot Basin”. Biogeographia 24: 313-318.

Parisi-Baradad V., Lombarte A., García-Ladona E., Cabestany J., Piera J., Chic Ò. 2005. Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Mar. Freshw. Res. 56: 795-804. http://dx.doi.org/10.1071/MF04162

Parisi-Baradad V., Manjabacas A., Lombarte A., Olivella R., Chic Ò., Piera J., García-Ladona E. 2010. Automatic Taxon Identification of Teleost fishes in an otolith online database. Fish. Res. 105: 13-20. http://dx.doi.org/10.1016/j.fishres.2010.02.005

Pierce G.J., Boyle P.R. 1991. A review of methods for diet analysis in piscivorous marine mammals. Oceanogr. Mar. Biol. Ann. Rev. 29: 409-486.

Por F.D. 1978. Lessepsian migration – the influx of Red Sea Biota into the Mediterranean by way of the Suez Canal. Springer-Verlag, Berlin-Heidelberg-New York, 228 pp.

Platt C., Popper A.N. 1981. Fine structure and function of the ear. In: Tavaloga W.N., Popper A.N., Fay R.R. (eds.), Hearing and sound communication in fishes. Springer-Verlag, New York, pp. 1-36. http://dx.doi.org/10.1007/978-1-4615-7186-5_1

Ramcharitar J.U., Deng X., Ketten D., Popper A.N. 2004. Form and function in the unique inner ear of a teleost fish: the silver perch (Bairdiella chrysoura). J. Comp. Neurol. 475: 531-539. http://dx.doi.org/10.1002/cne.20192 PMid :15236234

Reichenbacher B., Sienknecht U., Kuchenhoff H., Fenske N. 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant Killifish (Aphanius, †Prolebias). J. Morphol. 268: 898-915. http://dx.doi.org/10.1002/jmor.10561 PMid :17674357

Rivaton J., Bourret P. 1999. Les otolithes des poissons de l’Indo-Pacifique. Doc. Sci. Tech. II 2: 1-378.

Sánchez-Tocino L., Hidalgo Puertas F., Pontes M. 2007. Primera cita de Fistularia commersonii Ruppell, 1838 (Osteichtyes: Fistulariidae) en aguas mediterráneas de la Península Ibérica. Zoologica Baetica 18: 79-84.

Sanz-Echeverría J. 1926. Datos sobre el otolito sagita de los peces de España. Bol. R. Soc. Esp. Hist. Nat. 26: 145-160.

Schoener T.W. 1974. Resource partitioning in ecological communities. Science 1985: 27-39. http://dx.doi.org/10.1126/science.185.4145.27 PMid :17779277

Schulz-Mirbach T., Stransky C., Schilickeisen J., Reichenbacher B. 2008. Differences in otolith morphologies between surface- and cave-dwelling populations of Poecilia mexicana (Teleostei, Poeciliidae) reflect adaptations to life in an extreme habitat. Evol. Ecol. Res. 10: 537-558.

Smale M.J., Watson G., Hecht T. 1995. Otolith atlas of southern African marine fishes. Ichthyol. Monogr. JLB. Smith Inst. Ichthyol. 1: 1-253.

Tuset V.M., Lombarte A., Assis C. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci. Mar. 72S1: 1-198.

Tuset V.M., Piretti S., Lombarte A., González J.A. 2010. Using sagittal otoliths and eye diameter for ecological characterization of deep-sea fish: Aphanopus carbo and A. intermedius form NE Atlantic waters. Sci. Mar. 74(4): 807-814. http://dx.doi.org/10.3989/scimar.2010.74n4807

Volpedo A.V., Echeverría D.D. 2000. Catálogo y claves de otolitos para la identificación de peces del Mar Argentino. 1. Peces de Importância Económica. Editorial Dunken, Buenos Aires, 88 pp.

Zenetos. A., Gofas S., Verlaque M., Çinar M.E., García Raso E., Bianchi C.N., Morri C., Azzurro E., Bileceno?lu M., Froglia C., Siokou I., Violanti D., Sfriso A., San Martin G., Giangrande A., Kata?an T., Ballesteros E., Ramos-Esplá A., Mastrototaro F., Ocaña O., Zingone A., Gambi M.C., Streftaris N. 2010. Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Medit. Mar. Sci. 11(2): 381-493.

Zouari-Ktari R., Bradai M.N., Bouain A. 2008. The feeding habits of the Lessepsian fish Stephanolepis diaspros (Fraser-Brunner, 1940) in the Gulf of Gabes (eastern Mediterranean Sea). Cah. Biol. Mar. 49: 329-335.




Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es