Differentiating morpho-functional patterns of the five most common deep-sea benthic anglerfishes (Lophiiformes) from Andaman and Nicobar Islands (eastern Indian Ocean)





fish body traits, otolith shape, ecomorphology, Lophiiformes


Anglerfishes are widely distributed from shallow to deep-water habitats occupying different ecological niches. To explain this adaptability, we performed a morpho-functional study on common benthic anglerfishes inhabiting the Indian deep-sea waters. Sensory capabilities of species were examined using the morphology and morphometry of sagitta otoliths (related to detection sound and hearing) and eye size (related to visual communication). We also performed an analysis of the degree of functional niche overlap using fish body traits to understand the coexistence of species. Otoliths showed a morphological pattern similar to that of other anglerfishes: an archaesulcoid sulcus acusticus and variability in the irregularity of the dorsal margin. This last feature affected the allometric relationships between the otolith morphometry and fish length, as well as the otolith relative sizes of each species. The findings suggested that bigger otoliths are associated with the increase of depth distribution of species up to 1000 m, from which it decreases. Our hypothesis is that anglerfishes with irregular otolith shapes could be linked to more nocturnal feeding behaviour because they were characterized by greater eye sizes. The results also indicated interspecific significant differences in functional traits providing a low niche overlap. Therefore, our study supports the hypothesis of an environmental and ecological specialization of benthic anglerfishes.


Download data is not yet available.


Afonso-Dias I.M.D.S.B.R.P. 1997. Aspects of the biology and ecology of anglerfish (Lophius piscatorius) off the west coast of Scotland (ICES sub area via). Ph.D. thesis, Univ. Aberdeen, 192 pp.

Aguilar-Medrano R., Frederich B., Barber P.H. 2016. Modular diversification of the locomotor system in damselfishes (Pomacentridae). J. Morphol. 277: 603-614. https://doi.org/10.1002/jmor.20523 PMid:26919129

Alcock A.W. 1891. Natural history notes from H.M. Indian Marine Survey Steamer "Investigator" Ser. II, No. 1. On the results of deep-sea dredging during the season 1890-91. Ann. Mag. Nat. Hist. 6: 16-34. https://doi.org/10.1080/00222939109460385

Alcock A.W. 1894. Natural history notes from H.M. Indian Marine Survey Steamer Investigator'- No. 11. An account of a recent collection of bathybial fishes from the Bay of Bengal and from the Laccadive Sea. J. Asiat. Soc. Bengal 58: 115-140.

Arellano R.V., Hamerlynck O., Vincx M., et al. 1995. Changes in the ratio of the sulcus acusticus area to the sagitta area of Pomatoschistus minutus and P. lozanoi (Pisces, Gobidae). Mar. Biol. 122: 355-360. https://doi.org/10.1007/BF00350868

Armstrong M.P., Musick J.A., Colvocoresses J.A. 1996. Food and ontogenetic shifts in feeding of the goosefish, Lophius americanus. J. Northwest Atl. Fish. Sci. 18: 99-103. https://doi.org/10.2960/J.v18.a7

Arnold R.J. 2015. Evolutionary Relationships of the Enigmatic Anglerfishes (Teleostei: Lophiiformes): Can Nuclear DNA Provide Resolution for Conflicting Morphological and Mitochondrial Phylogenies? Ph.D. thesis, Univ. Wash. U.S.A., 83 pp.

Arnold R.J., Pietsch T.W. 2012. Evolutionary history of frogfishes (Teleostei: Lophiiformes: Antennariidae): A molecular approach. Mol. Phylogenetics Evol. 62: 117-129. https://doi.org/10.1016/j.ympev.2011.09.012 PMid:21985964

Balakrishnan M., Srivastava R.C., Pokhriyal M. 2008. Biodiversity of Andaman and Nicobar Islands. Biobytes 3: 9-12.

Bellwood D.R., Klanten S., Cowman P.F., et al. 2010. Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. J. Evol. Biol. 23: 335-349. https://doi.org/10.1111/j.1420-9101.2009.01904.x PMid:20487131

Bellwood D.R., Goatley C.H.R., Brandl S.J., et al. 2014. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. Proc. R. Soc. B 281: 20133046. https://doi.org/10.1098/rspb.2013.3046 PMid:24573852 PMCid:PMC3953842

Bohórquez-Herrera J., Cruz-Escalona V.H., Adams D.C., et al. 2015. Feeding ecomorphology of seven demersal marine fish species in the Mexican Pacific Ocean. Environ. Biol. Fish. 98: 1459-1473. https://doi.org/10.1007/s10641-014-0373-1

Boyle K.S., Horn M.H. 2006. Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile. Mar. Ecol. Prog. Ser. 319: 65-84. https://doi.org/10.3354/meps319065

Bridge T.C. Luiz O.J., Coleman R.R., et al. 2016. Ecological and morphological traits predict depth-generalist fishes on coral reefs. Proc. R. Soc. B 283: 20152332. https://doi.org/10.1098/rspb.2015.2332 PMid:26791616 PMCid:PMC4795020

Cañás L., Stransky C., Schlickeisen J., et al. 2012. Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES J. Mar. Sci. 69: 250-256. https://doi.org/10.1093/icesjms/fss006

Carothers J.H., Jaksić, F.M. 1984. Time as a niche difference: the role of interference competition. Oikos 42: 403-406. https://doi.org/10.2307/3544413

Carlucci R., Capezzuto F., Maiorano P., et al. 2009. Distribution, population structure and dynamics of the black anglerfish (Lophius budegassa) (Spinola, 1987) in the Eastern Mediterranean Sea. Fish. Res. 95: 76-87. https://doi.org/10.1016/j.fishres.2008.07.015

Caruso J.H. 1983. The systematics and distribution of the lophiid anglerfishes: II. Revisions of the genera Lophiomus and Lophius. Copeia 1: 11-30. https://doi.org/10.2307/1444694

Caruso J.H., 1985. The systematics and distribution of the lophiid anglerfishes: III. Intergeneric relationships. Copeia 4: 870-875. https://doi.org/10.2307/1445235

Casatti L., Castro R. 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical ichthyol. 4: 203-214. https://doi.org/10.1590/S1679-62252006000200006

Colborne S.F., Peres-Neto P.R., Longstaffe F.J., et al. 2013. Effects of foraging and sexual selection on ecomorphology of a fish with alternative reproductive tactics. Behav. Ecol. 24: 1339-1347. https://doi.org/10.1093/beheco/art072

Collar D.C., Wainwright P.C. 2006. Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes. Evolution 60: 2575-2584. https://doi.org/10.1111/j.0014-3820.2006.tb01891.x PMid:17263118

Colmenero A.I., Aguzzi J., Lombarte A., et al. 2010. Sensory constraints in temporal segregation in two species of anglerfish, Lophius budegassa and L. piscatorius. Mar. Ecol. Prog. Ser. 416: 255-265. https://doi.org/10.3354/meps08766

de Busserolles F., Fitzpatrick J.L., Paxton J.R., et al. 2013. Eye-size variability in deep-sea lanternfishes (Myctophidae): an ecological and phylogenetic study. PLoS ONE 8: e58519. https://doi.org/10.1371/journal.pone.0058519 PMid:23472203 PMCid:PMC3589346

Foster K., Bower L., Piller K. 2015. Getting in shape: habitat-based morphological divergence for two sympatric species. Biol. J. Linn. Soc. 114: 152-162. https://doi.org/10.1111/bij.12413

Frederich B., Olivier D., et al. 2016. Trophic ecology of damselfishes. In: Frederich B., Parmentier E (eds), Biology of Damselfishes, CRC Press, pp. 153-167. https://doi.org/10.1201/9781315373874-7

Froese R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol. 22: 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x

Froese R., Tsikliras A.C., Stergiou K.I. 2011. Editorial note on weight-length relations of fishes. Acta Ichthyol. et Piscatoria 41: 261-263. https://doi.org/10.3750/AIP2011.41.4.01

Gatz A.J. 1979. Community organization in fishes as indicated by morphological features. Ecology 60: 711-718. https://doi.org/10.2307/1936608

Geange S.W., Pledger S., Burns K.C., et al. 2011. A unified analysis of niche overlap incorporating data of different types. Methods Ecol. Evol. 2: 175-184. https://doi.org/10.1111/j.2041-210X.2010.00070.x

Gibran F.Z., Castro R.M.C. 1999. Activity, feeding behaviour and diet of Ogcocephalus vespertilio in southern west Atlantic. J. Fish Biol. 55: 588-595. https://doi.org/10.1111/j.1095-8649.1999.tb00701.x

Hammer O., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological Statistic software package for education and data analysis. Paleontol. Electron. 4: 4. https://palaeo-electronica.org/2001_1/past/past.pdf

Hashim M. 2012. Distribution, diversity and biology of deep-sea fishes in the Indian EEZ. Ph.D. thesis, Cochin Univ. Sci. Technol. India, 131 pp.

Hislop J.R.G., Holst J.C., Skagen D. 2000. Near-surface captures of post-juvenile anglerfish in the North-east Atlantic-an unsolved mystery. J. Fish Biol. 57: 1083-1087. https://doi.org/10.1006/jfbi.2000.1364

Ho H.C., Ma W.C. 2016. Revision of southern African species of the anglerfish genus Chaunax (Lophiiformes: Chaunacidae), with descriptions of three new species. Zootaxa 4144: 175-194. https://doi.org/10.11646/zootaxa.4144.2.2 PMid:27470847

Ho H.C., Shao K.T. 2008. The batfishes (Lophiiformes Ogcocephalidae) of Taiwan, with descriptions of eight new records. J. Fish Soc. Taiwan 35: 289-313.

Ho H.C., Meleppura R.K., Bineesh K.K. 2016a. Chaunax multilepis sp. nov., a new species of Chaunax (Lophiiformes: Chaunaci dae) from the northern Indian Ocean. Zootaxa 4103: 130-136. https://doi.org/10.11646/zootaxa.4103.2.3 PMid:27394623

Ho H.C., Kawai T., Satria F. 2016b. New records of the anglerfish family Lophiidae (Order Lophiiformes) from Indonesia. Acta Ichthyol. et Piscatoria 46: 77-85. https://doi.org/10.3750/AIP2016.46.2.03

Huxley J.S. 1924. Constant differential growth-ratios and their significance. Nature 114: 895-896. https://doi.org/10.1038/114895a0

Ingram T. 2011. Speciation along a depth gradient in a marine adaptive radiation. Proc. R. Soc. B 278: 613-618. https://doi.org/10.1098/rspb.2010.1127 PMid:20810434 PMCid:PMC3025674

Jayaprakash A.A., Kurup B.M., Sreedhar U., et al. 2006. Distribution, diversity, length-weight relationship and recruitment pattern of deep-sea finfishes and shell fishes in the shelf-break area off southwest Indian EEZ. J. Mar. Biol. Assoc. India 48: 56-67.

Karpouzi V.S., Stergiou K.I. 2003. The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J. Fish Biol. 62: 1353-1365. https://doi.org/10.1046/j.1095-8649.2003.00118.x

Karuppasamy P.K., Balachandran K., George S., et al. 2008. Food of some deep sea fishes collected from the eastern Arabian Sea. J. Mar. Biol. Assoc. India 50: 134-138.

Kéver L., Colleye O., Herrel A., et al. 2014. Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus). J. Exp. Biol. 217: 2517-2525. https://doi.org/10.1242/jeb.105254 PMid:24803458

Kumar K.V.A., Thomy R., Deepa K.P., et al. 2016. Length-weight relationship of six deep-sea fish species from the shelf regions of western Bay of Bengal and Andaman waters. J. Appl. Ichthyol. 32: 1334-1336. https://doi.org/10.1111/jai.13164

Kumar K.V.A., Tuset V.M., Manjebrayakath H., et al. 2017a. Functional approach reveals low niche overlap among common deep-sea fishes from the south-eastern Arabian Sea. Deep Sea Res. I 119: 16-23. https://doi.org/10.1016/j.dsr.2016.11.011

Kumar K.V.A., Nikki R., Oxona K., et al. 2017b. Relationships between fish and otolith size of nine deep-sea fishes from the Andaman and Nicobar waters. North Indian Ocean. J. Appl. Ichthyol. 33: 1187-1195. https://doi.org/10.1111/jai.13467

Kumar K.V.A., Deepa K.P., Hashim M., et al. 2017c. Relationships between fish size and otolith size of four bathydemersal fish species from the south eastern Arabian Sea, India. J. Appl. Ichthyol. 33: 102-107. https://doi.org/10.1111/jai.13250

Kumar K.V.A., Thomy R., Hashim M., et al. 2018. Length-weight relationships of 11 deep-sea fishes from the western Bay of Bengal and Andaman waters, India. J. Appl. Ichthyol. 34: 1048-1051. https://doi.org/10.1111/jai.13695

Layman C.A., Langerhans R.B., Winemiller K.O. 2005. Body size, not other morphological traits, characterizes cascading effects in fish assemblage composition following commercial netting. Can. J. Fish. Aquat. Sci. 62: 2802-2810. https://doi.org/10.1139/f05-183

Lleonart J., Salat J., Torres G.J. 2000. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205: 85-93. https://doi.org/10.1006/jtbi.2000.2043 PMid:10860702

Lloyd R.E. 1909. A description of the deep-sea fish caught by the RIMS ship" Investigator" since the year 1900, with supposed evidence of mutation in Malthopsis. Mem. Indian Mus. 2: 139-180.

Lombarte A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Environ. Biol. Fish. 33: 405-410. https://doi.org/10.1007/BF00010955

Lombarte A., Cruz A. 2007. Otolith size trends in marine fish communities from different depth strata. J. Fish Biol. 71: 53-76. https://doi.org/10.1111/j.1095-8649.2007.01465.x

Lombarte A., Chic Ò., Parisi-Baradad V., et al. 2006. A web-based environment for shape analysis of fish otoliths. The AFORO database. Sci. Mar. 70: 147-152. https://doi.org/10.3989/scimar.2006.70n1147

Lombarte A., Palmer M., Matallanas J., et al. 2010. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ. Biol. Fish. 89: 607-618. https://doi.org/10.1007/s10641-010-9673-2

Lychakov D.V., Rebane Y.T. 2000. Otolith regularities. Hear. Res. 143: 83-102. https://doi.org/10.1016/S0378-5955(00)00026-5

MacArthur R., Levins R. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101: 377-385. https://doi.org/10.1086/282505

Marrama G., Kriwet J. 2017. Principal component and discriminant analyses as powerful tools to support taxonomic identification and their use for functional and phylogenetic signal detection of isolated fossil shark teeth. Plos ONE 12: e0188806. https://doi.org/10.1371/journal.pone.0188806 PMid:29182683 PMCid:PMC5705141

Marcus L.F. 1993. Some aspects of multivariate statistics for morphometrics. In: Marcus L.F., Bello E., et al. (eds), Contributions to morphometrics. Monog. Mus. Nac. Cienc. Nat. 8: 95-130.

Mason N.W., Lanoiselée C., Mouillot D., et al. 2008. Does niche overlap control relative abundance in French lacustrine fish communities? A new method incorporating functional traits. J. Anim. Ecol. 77: 661-669. https://doi.org/10.1111/j.1365-2656.2008.01379.x PMid:18397248

Mille T., Mahe K., Cachera M., et al. 2016. Diet is correlated with otolith shape in marine fish. Mar. Ecol. Prog. Ser. 555: 167-184. https://doi.org/10.3354/meps11784

Miya M., Pietsch T.W., Orr J.W., et al. 2010. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evol. Biol. 10: 58. https://doi.org/10.1186/1471-2148-10-58 PMid:20178642 PMCid:PMC2836326

Mouillot D., Mason W.N., Dumay O., et al. 2005. Functional regularity: a neglected aspect of functional diversity. Oecologia 142: 353-359. https://doi.org/10.1007/s00442-004-1744-7 PMid:15655690

Mouillot D., Graham N.A., Villéger S., et al. 2013. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28: 167-177. https://doi.org/10.1016/j.tree.2012.10.004 PMid:23141923

Nagareda B.H., Shenker J.M. 2008. Dietary analysis of batfishes (Lophiiformes: Ogcocephalidae) in the Gulf of Mexico. Gulf Mexico Sci. 26: 28-35. https://doi.org/10.18785/goms.2601.03

Narayani S., Venu S., Kumar M.A. et al. 2015. Ecomorphology of the feeding characteristics in selected reef fishes from south Andaman Islands: a preliminary study. J. Mar. Biol. Oceanogr. 4: 1-7.

Nazir A., Khan M.A. 2019. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshwater Fish 28: 499-511. https://doi.org/10.1111/eff.12471

Nelson J.S., Grande T.C., Wilson M.V.H. 2006. Fishes of the world. John Wiley and Sons, New Jersey, 707 pp.

Papiol V., Cartes J.E., Fanelli E., et al. 2013. Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: relationship with available food sources. J. Sea Res. 77: 53-69. https://doi.org/10.1016/j.seares.2012.10.002

Paxton J.R. 2000. Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? Philos. Trans. R. Soc. Lond. B. 355: 1299-1303. https://doi.org/10.1098/rstb.2000.0688 PMid:11079419 PMCid:PMC1692828

Pietsch T.W. 1981. The osteology and relationships of the anglerfish genus Tetrabrachium with comments on lophiiform classification. Fish. Bull. 79: 387-419.

Pietsch T.W., Grobecker D.B. 1987. Frogfishes of the world: systematics, zoogeography, and behavioral ecology. Stanford University Press, 420 pp.

Pietsch T.W., Orr J.W. 2007. Phylogenetic relationships of deep-sea anglerfishes of the suborder Ceratioidei (Teleostei: Lophiiformes) based on morphology. Copeia 2007: 1-34. https://doi.org/10.1643/0045-8511(2007)7[1:PRODAO]2.0.CO;2

Pohlert T. 2014. The pairwise multiple comparison of mean ranks package (PMCMR). R package, 27 pp. https://cran.r project.org/web/packages/PMCMR/vignettes/PMCMR.pdf

Preciado I., Velasco F., Olaso I., et al. 2006. Feeding ecology of black anglerfish Lophius budegassa: seasonal, bathymetric and ontogenetic shifts. J. Mar. Biol. Assoc. U.K. 86: 877-884. https://doi.org/10.1017/S0025315406013816

Quinn G.P., Keough M.J. 2002. Experimental Design and Data Analysis for Biologists, Cambridge University Press, Cambridge, 558 pp. https://doi.org/10.1017/CBO9780511806384

R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rajan P.T., Sreeraj C.R. 2013. Fish fauna of Andaman and Nicobar Islands: a review. In: Venkataraman K., Sivaperuman C., et al. (eds), Ecology and Conservation of Tropical Marine Faunal Communities. Springer, Berlin, Heidelberg, pp. 231-243. https://doi.org/10.1007/978-3-642-38200-0_15 PMid:23872191

Rajeeshkumar M.P. 2018. Deep-sea anglerfishes (Pisces-Lophiiformes) of the Indian EEZ: Systematics, distribution and Biology. Ph.D. thesis, Cochin Univ. Sci. Technol. India, 307 pp.

Rajeeshkumar M.P., Jacob V., Sumod K.S., et al. 2016. Three new records of rare deep-sea Anglerfishes (Lophiiformes: Ceratioidei) from the Northern Indian Ocean. Mar. Biodivers. 46: 923-928. https://doi.org/10.1007/s12526-015-0437-2

Rajeeshkumar M.P., Meera K.M., Hashim M. 2017. A New Species of the Deep-Sea Ceratioid Anglerfish Genus Oneirodes (Lophiiformes: Oneirodidae) from the Western Indian Ocean. Copeia 105: 82-84. https://doi.org/10.1643/CI-16-467

Ribeiro M.D., Teresa F.B., Casatti L. 2016. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient. Neotropical Ichthyol. 14: e140185. https://doi.org/10.1590/1982-0224-20140185

Sadighzadeh Z., Otero-Ferrer J.L., Lombarte A., et al. 2014. An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology. Sci. Mar. 78: 353-362. https://doi.org/10.3989/scimar.03982.16C

Schmitz L., Wainwright P.C. 2011. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes. BMC Evol. Biol. 11: 338. https://doi.org/10.1186/1471-2148-11-338 PMid:22098687 PMCid:PMC3240680

Schwarzhans W. 2014. Head and otolith morphology of the genera Hymenocephalus, Hymenogadus and Spicomacrurus (Macrouridae), with the description of three new species. Zootaxa 3888: 73 pp. https://doi.org/10.11646/zootaxa.3888.1.1 PMid:25544034

Seehausen O., Terai Y., Magalhaes I.S., et al. 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620-626. https://doi.org/10.1038/nature07285 PMid:18833272

Sibbing F.A., Nagelkerke L.A.J. 2001. Resource partitioning by lake Tana barbs predicted from fish morphometrics and prey characteristics. Rev. Fish. Biol. Fish. 10: 393-437. https://doi.org/10.1023/A:1012270422092

Sreedhar U., Sudhakar G.V.S., Meenakumari B. 2013. Length-weight relationship of deepsea demersal fishes from the Indian EEZ. Ind. J. Fish. 60: 123-125.

Sumod K.S. 2018. Deep-sea eels (Teleostei: Anguilliformes) of Indian EEZ: Systematics, distribution and Biology. Ph.D. thesis, Cochin Univ. Sci. Technol. India, 474 pp.

Tuset V.M., Lombarte A., Assis C.A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci. Mar. 72S1: 7-198. https://doi.org/10.3989/scimar.2008.72s17

Tuset V.M., Piretti S., Lombarte A., et al. 2010. Using sagittal otoliths and eye diameter for ecological characterization of deep-sea fish: Aphanopus carbo and A. intermedius from NE Atlantic waters. Sci. Mar. 74: 807-814. https://doi.org/10.3989/scimar.2010.74n4807

Tuset V.M., Otero-Ferrer J.L., Gómez-Zurita J., et al. 2016. Otolith shape lends support to the sensory drive hypothesis in rockfishes. J. Evol. Biol. 29: 2083-2097. https://doi.org/10.1111/jeb.12932 PMid:27364643

Tuset V.M., Olivar M.P., Otero-Ferrer J.L., et al. 2018. Morpho-functional diversity in Diaphus spp. (Pisces: Myctophidae) from the central Atlantic Ocean: Ecological and evolutionary implications. Deep Sea Res. I 138: 46-59. https://doi.org/10.1016/j.dsr.2018.07.005

Venu S., Kurup B.M. 2002. Distribution and abundance of deep-sea fishes along the west coast of India. Fish Technol. 39: 20-26.

Villéger S., Novack-Gottshall P.M., Mouillot D. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecol. Lett. 14: 561-568. https://doi.org/10.1111/j.1461-0248.2011.01618.x PMid:21481126

Villéger S., Brosse S., Mouchet M., et al. 2017. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79: 783-801. https://doi.org/10.1007/s00027-017-0546-z

Volpedo A.V., Tombari A.D., Echeverría D.D. 2008. Ecomorphological patterns of the sagitta of Antarctic fish. Polar Biol. 31: 635-640. https://doi.org/10.1007/s00300-007-0400-1

Wainwright P.C., Bellwood D.R., Westneat M.W. 2002. Ecomorphology of locomotion in labrid fishes. Environ. Biol. Fish. 65: 47-62. https://doi.org/10.1023/A:1019671131001

Wainwright P., Carroll A.M., Collar D.C., et al. 2007. Suction feeding mechanics, performance, and diversity in fishes. Integr. Comp. Biol. 47: 96-106. https://doi.org/10.1093/icb/icm032 PMid:21672823

Warrant E. 2004. Vision in the dimmest habitats on earth. J. Comp. Physiol. A 190: 765-789. https://doi.org/10.1007/s00359-004-0546-z PMid:15375626

Watson D.J., Balon E.K. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. J. Fish Biol. 25: 371-384. https://doi.org/10.1111/j.1095-8649.1984.tb04885.x

Webb P.W. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24: 107-120. https://doi.org/10.1093/icb/24.1.107

Wilson Jr. R.R. 1985. Depth-related changes in sagitta morphology in six macrourid fishes of the Pacific and Atlantic Oceans. Copeia 4: 1011-1017. https://doi.org/10.2307/1445256

Winemiller K.O., Kelso-Winemiller L.C., Brenkert A.L. 1995. Ecomorphological diversification and convergence in fluvial cichlid fishes. In: Luczkovich J.J., Motta P.J., et al. (eds), Ecomorphology of fishes. Springer, Dordrecht, pp. 235-261. https://doi.org/10.1007/978-94-017-1356-6_17

Zhao T., Villéger S., Lek S., et al. 2014. High intraspecific variability in the functional niche of a predator is associated with ontogenetic shift and individual specialization. Ecol. Evol. 4: 4649-4657 https://doi.org/10.1002/ece3.1260 PMid:25558359 PMCid:PMC4278817



How to Cite

Rajeeshkumar M, Vijayan Aneesh Kumar K, Otero-Ferrer JL, Lombarte A, Hashim M, Saravanane N, Narayanan Sanjeevan V, Venkata Ramana Murthy M, Manuel Tuset V. Differentiating morpho-functional patterns of the five most common deep-sea benthic anglerfishes (Lophiiformes) from Andaman and Nicobar Islands (eastern Indian Ocean). scimar [Internet]. 2020Dec.11 [cited 2023Dec.11];84(4):369-84. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1872




Most read articles by the same author(s)

1 2 > >>