Scientia Marina, Vol 71, No 2 (2007)

Diet of larval albacore Thunnus alalunga (Bonnaterre, 1788) off Mallorca Island (NW Mediterranean)

Ignacio Alberto Catalán
IEO-Centre Oceanogràfic de Balears, Palma de Mallorca , Spain

Francisco Alemany
1IEO-Centre Oceanogràfic de Balears, Palma de Mallorca , Spain

Ana Morillas
1IEO-Centre Oceanogràfic de Balears, Palma de Mallorca , Spain

Beatríz Morales-Nin
Grupo de Oceanografía Interdisciplinar, Institut Mediterrani d’Estudis Avançats, Islas Baleares , Spain


These are the first data on the feeding of larval albacore (Thunnus alalunga Bonnaterre, 1788) in the Mediterranean. Specimens were gathered from day-time bongo-hauls conducted over the SW Mallorcan (Balearic Islands) shelf-slope. Ninety eight percent of 101 individuals ranging from 2.65 to 9.4 mm standard length (SL) contained 1 to 15 prey items per gut. Mean number of prey/gut was 3.55 ± 2.19 (SD). A positive correlation was found between larval SL and the number of prey/gut. The analysis of frequency of occurrence (F), numerical frequency (N), weight frequency (W) and the Index of Relative Importance (IRI) showed a dominance of copepodites and nauplii in the smallest size-class. As larvae grew, cladocerans and Calanoida copepodites dominated the diet, and cladocerans and copepodites were important in F, N and W. Piscivory was observed after notochord flexion and was important in terms of W. A positive correlation between mean prey size and both SL and lower jaw length (LJL) was observed. The niche breadth (S) did not vary with LJL, but the raw prey size range did. Larger copepodites, the absence of nauplii and the incorporation of fish larvae and a larger number of cladocerans in the diet accounted for the increase in mean prey size through increased larval size.


Thunnus alalunga; larvae; Mediterranean; feeding; niche breadth

Full Text:



Alemany, F. – 1997. Ictioplancton del Mar Balear. PhD thesis, Univ. de les Illes Balears.

Alemany, F., S. Deudero, B. Morales-Nin, J.L. Lopez-Jurado, J. Jansa, M. Palmer and I. Palomera. – 2006. Influence of physical environmental factors on the composition and horizontal distribution of summer larval fish assemblages off Mallorca island (Balearic archipelago, western Mediterranean). J. Plankton Res., 28: 473-487. doi:10.1093/plankt/fbi123

Anderson, J.T. – 1988. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J. Northwest Atl. Fish. Sci., 8: 55-66.

Anon. – 1996. Report of the Final Meeting of the ICCAT Albacore Research Program . Sukarrieta, Vizcaya, Spain, 1-8 June 1994. Collect. Vol. Sci. Pap. ICCAT., 43: 1-395.

Anon. – 2001. The SCRS Report of the albacore assessment of ICCAT (Madrid, España, 9 a 15 octubre de 2000). Collect. Vol. Sci. Pap. ICCAT, 52(1): 1283-1390.

Anon. – 2004. 2003 ICCAT albacore stock assessment session. Collect. Vol. Sci. Pap. ICCAT, 56(4): 1223-1311.

Arrizabalaga, H., López-Rodas, V., Ortíz de Zárate, V., Costas, E. and A. González-Garcés. – 2002. Study on the migrations and stock structure of albacore (Thunnus alalunga) from the Atlantic ocean and the Mediterranean based on conventional tag-release-recapture experiences. Collect. Vol. Sci. Pap. ICCAT., 54(5): 1479-1494.

Cortés, E. – 1997. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can. J. Fish. Aquat. Sci., 54: 726-738. doi:10.1139/cjfas-54-3-726

Dicenta, A. – 1977. Zonas de puesta del atún (Thunnus thynnus L.) y otros túnidos en el Mediterráneo occidental y primer intento de evaluación del stock de reproductores de atún. Bol. Inst. Esp. Oceanogr., 234: 109-135.

Dicenta, A., Piccinetti, C. and G. Piccinetti-Manfrin. – 1975. Observaciones sobre la reproducción de los túnidos en las islas Baleares. Bol. Inst. Esp. Oceanogr., 204: 27-37.

Dicenta, A., C. Franco and A. Lago de Lanzós. – 1983. Distribution and abundance of the families Thunnidae and Mullidae in the Balearic Waters. Rapp. Comm Int. Mer. Médit., 28: 149-153.

De la Serna, JM, J Valeiras, E Alot and D Godoy. – 2002. El atún blanco (Thunnus alalunga) del Mediterráneo Occidental. Collect. Vol. Sci. Pap. ICCAT., 55(1): 160-165.

Duclerc, J., Sacchi, J., Piccinetti, C., Piccinetti-Manfrin, G., Dicenta, A. and M. Barrois. – 1973. Nouvelles données sur la reproduction du thon rouge (Thunnus thynnus L.) et d’autres espèces de thonidés en Méditerranée. Rev. Trav. Inst. Pêches Marit., 37: 163-176.

García, A., F. Alemany, P. Velez-Belchi, J.L. López Jurado, M. de la Serna, C. González Pola, J.M. Rodríguez and J. Jansá. – 2003. Bluefin tuna and associated species spawning grounds in the oceanographic scenario of the Balearic archipielago during June 2001. Collect. Vol. Sci. Pap. ICCAT., 55(1): 138-148.

García, A., D. Cortés, T. Ramírez, R. Fehri-Bedoui, F. Alemany, J.M. Rodríguez, A. Carpena and J.P. Álvarez. – 2006. First data on growth and nucleic acid and protein content of field-captured Mediterranean bluefin (Thunnus thynnus) and albacore (Thunnus alalunga) tuna larvae: a comparative study. Sci. Mar., 70S2: 67-78.

Govoni, J.J. – 2005. Fisheries oceanography and the ecology of early life histories of fishes: a perspective over fifty years. Sci. Mar., 69(Suppl. 1): 125-137.

Hare, J.A. and R.K. Cowen. – 1997. Size, growth, development, and survival of the planktonic larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology, 78: 2415-2431.

Houde, E.D. – 1997. Patterns and consequences of selective processes in teleost early life histories. In: M.D. Chambers and E.A. Trippel (eds.), Early life history and recruitment in fish populations, pp. 173-196. Chapman and Hall, London.

Houde, E.D. and R.C. Schekter. – 1983. Oxygen uptake and comparative energetics among eggs and larvae of three subtropical marine fishes. Mar. Biol., 72: 283-293. doi:10.1007/BF00396834

Hunter, J.R. – 1981. Feeding ecology and predation of marine fish larvae. In: R. Lasker (ed.), Marine fish larvae: morphology, ecology, and relation to fisheries, pp. 34-77. Washington Sea Grant Program, Seattle.

Kaji, T., M. Kodama, H. Arai, M. Tagawa and M. Tanaka. – 2002. Precocious development of the digestive system in relation to early appearance of piscivory in striped bonito Sarda orientalis larvae. Fish. Sci., 68: 1212-1218. doi:10.1046/j.1444-2906.2002.00557.x

López-Rodas,V., Arrizabalaga, H., Nieto, B, González-Garcés, A. and E. Costas. – 2002. Use of lectins to characterise genetic variability and geographic differentiation in natural population of Thunnus alalunga (Bonn. 1788). Collect. Vol. Sci. Pap. ICCAT, 54(5): 1495-1507.

Millot, C. – 1994. Models and data: a synergetic approach in the western Mediterranean Sea. In: P. Malanotte-Rizzoli and A.R. Robinson (eds.), Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, pp. 407-425. Kluwer, Amsterdam.

Nakadate, M., J. Viñas, A. Corriero, S. Clarke, N. Suzuki and S. Chow. – 2005. Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. J. Fish Biol., 6: 1545-1557. doi:10.1111/j.0022-1112.2005.00705.x

Padoa, E. – 1956. Divisione Scombriformes, Uova, larve e stadi giovanili di Teleostei. In: Fauna Flora Golfo Napoli, pp. 548-572.

Pearre, S. – 1986. Ratio-based trophic niche breadths of fish, the Sheldon spectrum, and the size-efficiency hypothesis. Mar. Ecol. Progr. Ser., 27: 299-314. doi:10.3354/meps027299

Pepin, P. – 1991. Effect Of Temperature And Size On Development Mortality And Survival Rates Of The Pelagic Early Life History Stages of Marine Fish. Can. J. Fish. Aquat. Sci., 48: 503-518. doi:10.1139/f91-065

Pepin, P. and R.W. Penney. – 1997. Patterns of prey size and taxonomic composition in larval fish: are there general size-dependent models? J. Fish Biol., 51: 84-100. doi:10.1111/j.1095-8649.1997.tb06094.x

Pinot, J.M., J.L. López-Jurado and M. Riera. – 2002. The CANALES experiment (1996-1998). Interannual, seasonal and mesoscale variability of the circulation in the Balearic Channels. Progr. Oceanogr., 55: 335-370. doi:10.1016/S0079-6611(02)00139-8

Ramírez, T., D. Cortés, A. García and A. Carpena. – 2004. Seasonal variations of RNA/DNA ratios and growth rates of the Alboran Sea sardine larvae (Sardina pilchardus). Fish. Res., 68: 57-65. doi:10.1016/j.fishres.2004.02.008

Sabatés, A. and E. Saiz. – 2000. Intra- and interspecific variability in prey size and niche breadth of myctophiform fish larvae. Mar. Ecol. Progr. Ser., 201: 261-271. doi:10.3354/meps201261

Satapoomin, S. – 1999. Carbon content of some common tropical Andaman Sea copepods. J. Plankton Res., 21: 2117-2123. doi:10.1093/plankt/21.11.2117

Schmitt, P.D. – 1986. Prey size selectivity and feeding rate of larvae of the northern anchovy, Engraulis mordax Girard. CalCOFI Rep., XXVII: 153-161.

Sheperd, J.G. and D.H. Cushing. – 1980. A mechanism for densitydependent survival of larval fish as the basis of a stock-recruitment relationship. J. Cons. int. Explor. Mer., 39: 160-167.

Shoji, J. and M. Tanaka. – 2001. Strong piscivory of Japanese Spanish mackerel larvae from their first feeding. J. Fish Biol., 59: 1682-1685. doi:10.1111/j.1095-8649.2001.tb00232.x

Uotani, I., T. Saito, K. Hiranuma and Y. Nishikawa. – 1990. Feeding habit of bluefin tuna Thunnus thynnus larvae in the Western North Pacific Ocean. Nipp. Suis. Gakka., 56: 713-717.

Uye, S. – 1982. Length-weight relationships of important zooplankton from the Inland Sea of Japan. J. Oceanogr. Soc. Jap., 38: 149-158. doi:10.1007/BF02110286

Viñas, J., Alvarado-Bremer J.R. and C. Pla. – 2004. Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar. Biol., 145: 225-232.

Walve J. and U. Larsson. – 1999. Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J. Plankton Res., 21: 2309-2321. doi:10.1093/plankt/21.12.2309

Young, J.W. and T.L.O. Davis. – 1990. Feeding ecology of larvae of southern bluefin, albacore and skipjack tunas (Pisces: Scombridae) in the eastern Indian Ocean. Mar. Ecol. Progr. Ser., 61: 17-29. doi:10.3354/meps061017

Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support