Scientia Marina, Vol 75, No 4 (2011)

Oceanic and atmospheric patterns during spawning periods prior to extreme catches of the Brazilian sardine (Sardinella brasiliensis) in the southwest Atlantic

Helena Cachanhuk Soares
Center for Weather Forecast and Climate Studies (CPTEC) - Remote Sensing Department (DSR), National Institute for Space Research (INPE) , Brazil

Luciano Ponzi Pezzi
Center for Weather Forecast and Climate Studies (CPTEC) - Remote Sensing Department (DSR), National Institute for Space Research (INPE) , Brazil

Douglas Francisco Marcolino Gherardi
Remote Sensing Department (DSR), National Institute for Space Research (INPE) , Brazil

Eduardo Tavares Paes
Instituto Socioambiental e dos Recursos Hídricos (ISARH). Universidade Federal Rural da Amazônia (UFRA) , Brazil


Relative maxima and minima of landings of Brazilian sardine captured in the Southeast Brazil Bight (SBB) were compared with oceanic and atmospheric composites relative to the spawning period in December and January, prior to these landings. Atmospheric and oceanic variables such as wind stress, Ekman transport, mixing index, sea surface temperature (SST), precipitation, outgoing long wave radiation and geopotential height were analyzed, revealing distinct climatological patterns in the SBB for these extreme catches that have not been described before. The system could be characterized by cooler SST composite anomaly (SSTA) along the SBB as a response to increased cloud cover and reduced incidence of short-wave radiation, predominating one year before the Brazilian sardine catch maxima. This system can take on a different configuration in which positive SSTA condition in the SBB is associated with a less intense South Atlantic Convergence Zone displaced southwards one year before the period of minimum catch. Our results indicate that the spatial structure of the spawning habitat is influenced by specific ocean-atmosphere interactions rather than simply resulting from the choice of a stable environment. This climatic constraint strongly affects the interannual variability of the Brazilian sardine production.


Brazilian sardine; southwest Atlantic climate; air-sea interaction; South Atlantic Convergence Zone; sea surface temperature; Southeast Brazil Bight

Full Text:



Acevedo, O.C., L.P. Pezzi, R.B. Souza, V. Anabor and G.A. Degrazia. – 2010. Atmospheric boundary layer adjustment to the synoptic cycle at the Brazil Malvinas Confluence, South Atlantic Ocean. J. Geophys. Res., 115: D22107.

Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin and E. Nelkin. – 2003. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrom., 4(6): 1147-1167.<1147:TVGPCP>2.0.CO;2

Bakun, A. – 1998. Ocean triads and radical interdecadal variation: bane and boon to scientific fisheries management. In: T.J. Pitcher, P.J.B. Hart. and D. Pauly (eds), Reinventing Fisheries Management, pp. 332-358. Kluwer Academic Publishers, London.

Bakun, A. and R.H. Parrish. – 1990. Comparative studies of coastal pelagic fish reproductive habitats: the Brazilian sardine (Sardinella aurita). J. Cons. Int. Mer., 46: 269-283.

Brambilla, M.C.V., N.J. Ferreira and H.F. Campos Velho. – 2004. Padrão de verão: ZCAS-VCAN atuando sobre a região sudeste do Brasil. In: XIII Congresso Brasileiro de Meteorologia, Fortaleza. Data access: 15 mar. 2009.

Campos, J.D., D. Velhote and I.C.A. Silveira. – 2000. Shelf break upwelling driven by Brazil Current cyclonic meanders. Geophys. Res. Lett., 27(6): 751-754.

Carton, J. and B.S. Giese. – 2005. SODA: A reanalysis of Ocean Climate. J. Geophys. Res. C. Data access: 13 jul. 2009.

Carvalho, L.M., C. Jones and B. Liebmann. – 2004. The South Atlantic Convergence Zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim., 17: 88-108.<0088:TSACZI>2.0.CO;2

Castro, B.M. and L.B. Miranda. – 1998. Physical oceanography of western Atlantic continental shelf located between 4° N and 34° S. In: A. R. Robinson and K. H. Brink (eds.), The Sea, pp. 209-251. John Wiley & Sons, Oxford.

Cavalcanti, I.F.A. and V.E. Kousky. – 2009. Frentes frias sobre o Brasil. In: I.F.A. Cavalcanti, N.J. Ferreira, M.G.A. Justi Da Silva, M.A.F. Silva Dias (eds.), Tempo e Clima, pp. 135-147.

Oficina de Textos, São Paulo.

Cergole, M.C. – 1995. Stock assessment of the brazilian sardine, Sardinella brasiliensis, of the southeastern coast of Brazil. Sci. Mar., 59: 597-610.

Cergole, M.C., S.A. Saccardo and C.L.D.B. Rossi-Wongtschowski.– 2002. Fluctuation in the spawning stock biomass and recruitment of the brazilian sardine (Sardinella brasiliensis): 1977- 1997. Revista Brasileira de Oceanografia., 50: 13-26.

Cergole, M.C. and C.L.D.B. Rossi-Wongtschowski. – 2005. Sardinella Brasiliensis (Steindachner, 1879). In: M. C. Cergole, A. O. Ávila-Da-Silva, C. L. D. B. Rossi-Wongtschowski (eds.), Análise das principais pescarias comerciais da região Sudeste-Sul do Brasil: dinâmica populacional das espécies em explotação. IOUSP, São Paulo.

Chaves, R.R. and P. Nobre. – 2004. Interactions between the South Atlantic Ocean and the atmospheric circulation over South America. Geophys. Res. Lett., 31: 1-4.

Cury, P. and C. Roy. – 1989. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci., 46: 670-680.

Doyle, M.E. and V.R. Barros. – 2002. Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J. Clim., 15: 3394-3410.<3394:MLLCAP>2.0.CO;2

Fuentes, M.V. – 1996. Bloqueios. Climanálise. INPE. São José dos Campos. Data access: 03 mar. 2010.

Gigliotti, E.S., D.F.M. Gherardi, E.T. Paes, R.B. Souza and M. Katsuragawa. – 2010. Spatial analysis of egg distribution and geographic changes in the spawning habitat of the Brazilian sardine Sardinella brasiliensis. J. Fish. Biol..

Jablonski, S. and L.F.L. Legey. – 2004. Quantifying environmental effects on the recruitment of Brazilian sardine (Sardinella brasiliensis), 1977-1993. Sci. Mar., 68: 385-398.

Justi Da Silva, M.G.A. and M.A.F. Silva Dias. – 2002. A freqüencia de fenômenos meteorológicos na América do Sul: uma climatologia. In: XII Congresso Brasileiro de Meteorologia, Foz de Iguaçu-PR, Data access: 22 mai. 2009.

Kayano, M.T. and V.E. Kousky. – 1990. Southern Hemisphere blocking: a comparison between two indices. Meteorol. Atmos. Phys., 42: 165-170.

Kayano, E. – 1999. Southeastern Pacific blocking episodes and their effect on South American Weather. Met.Atmos. Phys., 69: 145-155.

Kodama, Y-M. – 1992. Large Scale Common Features of Subtropical Precipitation Zones (the Baiu Frontal Zone, the SPCZ, and the SACZ). Part I: Characteristics of Subtropical Frontal Zones. J. Meteorol. Soc. Jpn., 70(4): 813-841.

Kodama, Y-M. – 1993. Large-Scale Common Features of Subtropical Precipitation Zones (the Baiu Frontal Zone, the SPCZ, and the SACZ). Part II: Conditions of the circulations for generating the STCZs. J. Meteorol. Soc. Jpn., 71(5): 581-610.

Lasker, R. – 1975. Field criteria for survival of Anchovy Larvae: The relation between inshore chlorophyll maximum layers and successful first feeding. Fish. Bull., 73(3): 453-462.

Lejenäs, H. – 1984. Characteristics of southern hemisphere blocking as determined from a time series of observational data. Q. J. Roy. Meteor. Soc., 110: 967-979.

Liebmann, B. and C.A. Smith. – 1996. Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. B. Am. Meteorol. Soc., 77(6): 1275-1277.

Matsuura, Y. – 1996. A probable cause of recruitment failure Sardinella Aurita population during the 1974/75 spawning season. S. Afr. J. Mar. Sci., 17: 29-35.

Paes, E.T. and L.E.S. Moraes. – 2007. A new hypothesis on the influence of the El Niño/La Niña upon the biological productivity, ecology and fisheries of the Southern Brazilian Bight. PanamJAS., 2: 94-102.

Pezzi, L.P. and I.F.A. Cavalcanti. – 1994. O jato subtropical sobre a América do Sul no período de 1980 a 1989. Anais do VIII Congresso Brasileiro de Meteorologia.

Pezzi, L.P., R.B. Souza, O. Acevedo, I. Wainer, M.M. Mata, C.A.E. Garcia and R. Camargo. – 2009. Multiyear measurements of the oceanic and atmospheric boundary layers at the Brazil- Malvinas confluence region. J. Geophys. Res., 114: D19103.

Pezzi, P.L. and R.B. Souza. – 2009. Variabilidade de mesoescala e interação oceano-atmosfera no Atlântico Sudoeste. In: I.F.A. Cavalcanti, N.J. Ferreira, M.G.A. Justi Da Silva, M.A.F. Silva Dias (eds.), Tempo e Clima, pp. 385-405. Oficina de Textos, São Paulo.

Quadro, M.F.L. – 1994. Cases study of the South Atlantic Convergence Zone (SACZ) over the South America. Msc thesis, Instituto Nacional de Pesquisas Espaciais.

Quinn, T.J. and R.B. Deriso. – 1999. Quantitative Fish Dynamics. Oxford, University Press, New York.

Ramírez, V., M.T. Kayano and N.J. Ferreira. – 1999. Statistical analysis of upper tropospheric vortices in the vicinity of northeast Brazil during the 1980-1989. Atmosféra, 12(2): 75-88.

Robertson, A.W. and C.R. Mechoso. – 2000. Interannual and interdecadal variability of the South Atlantic convergence zone. Mon. Weather. Rev., 128: 2947-2957.<2947:IAIVOT>2.0.CO;2

Rodrigues, R.R. and J.A. Lorenzzetti. – 2001. A numerical study of the effects of bottom topography and coastline geometry on the Southeast Brazilian coastal upwelling. Cont. Shelf. Res., 21: 371-394.

Saccardo, S.A. and C.L.D.B. Rossi-Wongtschowski. – 1991. Biolo-gia e avaliação do estoque da sardinha Sardinella Brasiliensis: Uma compilação. Atlântica., 13: 29-4.

Silva, W.B. and A.W. Gandu. – 1996. Análise diagnóstica do jato subtropical, durante a evolução da Zona de Convergência do Atlântico Sul. In: I Simpósio de Iniciação Científica do IAG- USP. São Paulo.

Sinclair, M. – 1988. Marine populations: an essay on population regulation and speciation. Univ. Washington Press, Seattle.

Sinclair, M.R. – 1996. A climatology of anticyclones and blocking for the southern hemisphere. Mon. Weather. Rev., 124: 245-262.<0245:ACOAAB>2.0.CO;2

Smith, T.M., R.W. Reynolds, T.C. Peterson and J. Lawrimore. – 2008. Improvements to NOAA’s Historical merged Land Ocean surface temperature analysis (1880-2006). J. Clim., 21: 2283-2296.

Sunyé, P.S. and J. Servain. – 1998. Effects of seasonal variations in meteorology and oceanography on the Brazilian sardine fishery. Fish. Oceanogr., 7: 89-100.

Trenberth, K.E and K.C.Mo. – 1985. Blocking in the southern hemisphere. Mon. Weather. Rev., 113: 3-21.<0003:BITSH>2.0.CO;2

Uppala, S.M., P.W. Kallberg, A.J. Simmons, U. Andrae, V.D. Bechtold., M. Fiorino., J.K. Gibson, J. Haseler, A. Hernandez., G.A. Kelly, X. Li., K. Onogi, S. Saarinen, N. Sokka, R.P. Allan, E. Andersson, K. Arpe, M.A. Balmaseda, A.C.M. Beljaars, L. Van De Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher., M.V. Fuentes, S. Hagemann, E. Hólm, B.J. Hoskins, L. Isaksen, P.A.E.M. Janssen, R. Jenne, A.P. Mcnally, J.F. Mahfouf, J.J. Morcrette, N.A. Rayner, R.W. Saunders, P . Simon, A. Sterl, K.E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo and J. Woollen. – 2005. The ERA-40 reanalysis. Q. J. Roy. Meteor. Soc., 131(612): 2961-3012.

Van Loon, H. – 1956. Blocking action in the southern hemisphere. Part I. Notos., 5: 171-177.

Virji, H. – 1981. A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon. Wea. Rev., 109: 599-610.<0599:APSOST>2.0.CO;2

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support