Scientia Marina, Vol 73, No 4 (2009)

Monochromatic blue light entrains diel activity cycles in the Norway lobster, Nephrops norvegicus (L.) as measured by automated video-image analysis

Jacopo Aguzzi
Institut de Ciències del Mar (ICM-CSIC), Spain

Corrado Costa
AgritechLab - Agricultural Engineering Research Unit of the Agriculture Research Council (CRA-ING), Italy

Paolo Menesatti
AgritechLab - Agricultural Engineering Research Unit of the Agriculture Research Council (CRA-ING), Italy

José Antonio García
Institut de Ciències del Mar (ICM-CSIC), Spain

Juan José Chiesa
Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Argentina

Francesc Sardà
Institut de Ciències del Mar (ICM-CSIC), Spain


There is growing interest in developing automated, non-invasive techniques for long-lasting, laboratory-based monitoring of behaviour in organisms from deep-water continental margins which are of ecological and commercial importance. We monitored the burrow emergence rhythms in the Norway lobster, Nephrops norvegicus, which included: a) characterising the regulation of behavioural activity outside the burrow under monochromatic blue light-darkness (LD) cycles of 0.1 lx, recreating slope photic conditions (i.e. 200-300 m depth) and constant darkness (DD), which is necessary for the study of the circadian system; b) testing the performance of a newly designed digital video-image analysis system for tracking locomotor activity. We used infrared USB web cameras and customised software (in Matlab 7.1) to acquire and process digital frames of eight animals at a rate of one frame per minute under consecutive photoperiod stages for nine days each: LD, DD, and LD (subdivided into two stages, LD1 and LD2, for analysis purposes). The automated analysis allowed the production of time series of locomotor activity based on movements of the animals’ centroids. Data were studied with periodogram, waveform, and Fourier analyses. For the first time, we report robust diurnal burrow emergence rhythms during the LD period, which became weak in DD. Our results fit with field data accounting for midday peaks in catches at the depth of slopes. The comparison of the present locomotor pattern with those recorded at different light intensities clarifies the regulation of the clock of N. norvegicus at different depths.


digital-video image analysis; thresholding; automation; monochromatic blue light; constant darkness; Nephrops norvegicus; locomotor activity

Full Text:



Aguzzi, J., D. Sarriá, J.A. García, J. Del Rio, F. Sardà and A. Manuel. – 2008. A new tracking system for the measurement of diel locomotor rhythms in the Norway lobster, Nephrops norvegicus (L.). J. Neurosci. Met., 173: 215-224. doi:10.1016/j.jneumeth.2008.06.009

Aguzzi, J. and J Chiesa. – 2005. Cardiac activity of Nephrops norvegicus (Decapoda: Nephropidae): the relationships between circadian and ultradian rhythms. J. Crustac. Biol., 25: 577-584. doi:10.1651/C-2606.1

Aguzzi, J., J.B. Company and P. Abelló. – 2004. Locomotor activity rhythms of continental slope Nephrops norvegicus (Decapoda: Nephropidae). J. Crustac. Biol., 24: 282-290. doi:10.1651/C-2458

Aguzzi, J. and F. Sardà. – 2008. A history of recent advancements on Nephrops norvegicus behavioral and physiological rhythms. Rev. Fish Biol. Fish., 18: 235-248. doi:10.1007/s11160-007-9071-9

Aguzzi, J., F. Sardà, P. Abelló, J.B. Company and G. Rotllant. – 2003. Diel and seasonal patterns of Nephrops norvegicus (Decapoda: Nephropidae) catchability in the western Mediterranean. Mar. Ecol. Prog. Ser., 258: 201-211. doi:10.3354/meps258201

Aguzzi, J., J. Chiesa, P. Abelló and A. Diez-Noguera. – 2005. Temporal modification in cardiac rhythmicity of Nephrops norvegicus (Crustacea: Decapoda) in relation to trawl capture stress. Sci. Mar., 69(3): 369-374

Aguzzi, J., J.J. Chiesa, R. Caprioli, D. Cascione, G. Magnifico, V. Rimatori and C. Costa. – 2006. Preliminary evidences of circadian fan activity rhythm in Sabella spallanzanii (Gmelin, 1791) (Polychaeta: Sabellidae). Sci. Mar., 70(4): 727-734 doi:10.3989/scimar.2006.70n4727

Andersen, F.S. – 1962. The Norway lobster in the Faroe waters. Medd. Dan. Fisk. Havunders., 3: 365-326.

Aréchiga, H., R.J.A. Atkinson and J.A. Williams. – 1980. Neurohumoral basis of circadian rhythmicity in Nephrops norvegicus (L.). Mar. Behav. Physiol., 7: 185-197. doi:10.1080/10236248009386980

Atkinson, R.J.A. and E. Naylor. – 1973. Activity rhythm in some burrowing decapods. Helgoländer wiss. Meeresunters, 24: 192-201. doi:10.1007/BF01609511

Atkinson, R.J.A. and E. Naylor. – 1976. An endogenous activity rhythm and the rhythmicity of catches of Nephrops norvegicus (L.). J. Exp. Mar. Biol. Ecol., 25: 95-108. doi:10.1016/0022-0981(76)90079-4

Bell, M.C., F. Redant, and I. Tuck. – 2006. Nephrops species. In: B.F. Phillips (ed.), Lobsters: biology, management, aquaculture and fisheries. Blackwell Publishing, Oxford.

Canal-Corretger, M.M., J. Vilaplana, T. Cambras and A. Díez-Noguera. – 2001. Functioning of the rat circadian system is modified by light applied in critical postnatal days. Am. J. Physiol. Reg. Integ. Comp. Physiol., 280: 1023-1030.

Chapman, C.J. – 1980. Ecology of juvenile and adult Nephrops. In: J.S. Cobb and B.F. Phillips (eds.). The biology and management of lobsters. pp. 143-178. Academic Press, New York.

Chapman, C.J., A.D.F. Johnstone and A.L. Rice. – 1975. The behaviour and ecology of the Norway lobster Nephrops norvegicus (L). 9th Proc. Eur. Mar. Biol. Symp.: 59–74.

Chapman, C.J., R. Pristley and H. Robertson. – 1972. Observations on the diurnal activity of the Norway lobster Nephrops norvegicus (L.). ICES, C.M/K 20.

Costa, C., A. Loy, S. Cataudella, D. Davis and M. Scardi. – 2006. Extracting fish size using dual underwater cameras. Aquac. Eng., 35: 218-227. doi:10.1016/j.aquaeng.2006.02.003

Cristo, M. and M. Castro. – 2005. Field estimation of daily ration of Norway lobster (Nephrops norvegicus) in the south of Portugal. N. Z. J. Mar. Freshw. Res., 39: 485-491.

Cronin, T.W. – 1986. Photoreception in marine invertebrates. Amer. Zool., 26: 403-415.

Edwards, D.H. – 1984. Crayfish extraretinal photoreception. I. Behavioural and motoneuron responses to abdominal illumination. J. Exp. Biol., 109: 291-306.

Emery, P., R. Sranewsky, C. Helfrich-Foster, M. Emery-Le, J. Hall and M. Rosbash. – 2000. Drosophila CRY is a deep brain circadian photoreceptor. Neuron, 26. 493-504. doi:10.1016/S0896-6273(00)81181-2

Fanjul-Moles, M.L., E.G. Escamilla-Chimal, A. Gloria-Soria and G. Hernández-Herrera. – 2004. The crayfish Procambarus clarkii CRY shows daily and circadian variation. J. Exp. Biol., 207: 1453-1460. doi:10.1242/jeb.00900

Farmer, A.S.D. – 1974. Burrowing behaviour of the Norway lobster, Nephrops norvegicus (L.) (Decapoda: Nephropidae). Estuar. Coast Mar. Sci., 2: 49-58. doi:10.1016/0302-3524(74)90027-9

Farmer, A.S.D. – 1975. Synopsis of biological data on Norway lobster, Nephrops norvegicus (Linneo 1758). FIRS/S, 112.

Fernández de Miguel, F. and H. Aréchiga. – 1994. Circadian locomotor activity and its entrainment by food in the crayfish Procambarus clarkii. J. Exp. Biol., 190: 9-21.

Gaten, E., P.M.J. Shelton, C.J. Chapman and A.M. Shaks. – 1990. Depth related variation in the structure and functioning of the compound eye of the Norway lobster Nephrops norvegicus. J. Mar. Biol. Ass. U.K., 70: 343–355. doi:10.1017/S0025315400035451

Herring, P. – 2002. The Biology of the Deep Ocean. Oxford University Press, Oxford.

Jerlov, N.G. – 1968. Optical Oceanography. Elsevier, Amsterdam.

Lee, L.P. and R. Szema. – 2005. Inspirations from Biological Optics for Advanced Photonic Systems. Science, 310: 1148-1150. doi:10.1126/science.1115248

Levine, J.D., P. Funes, H.B. Dowse and J.C. Hall. – 2002. Signal analysis of behavioral and molecular cycles. B.M.C. Neurosci., 3: 1. doi:10.1186/1471-2202-3-1

Loew, E.R. – 1974. Light-induced rhabdometric degeneration in the Norway lobster, Nephrops norvegicus (L.). ICES, C.M./K 29.

Moller, T.H. and D.A. Jones. – 1975. Locomotor rhythms and burrowing habits of Penaeus semisulcatus (de Haan) and P. monodon (Fabricius) (Crustacea: Penaeidae). J. Exp. Mar. Biol. Ecol., 18: 61-77. doi:10.1016/0022-0981(75)90017-9

Moller, T.H. and E. Naylor. – 1980. Environmental influence on locomotor activity in Nephrops norvegicus (Crustacea:Decapoda). J. Mar. Biol. Ass. U.K., 60: 103-113. doi:10.1017/S0025315400024152

Naylor, E. – 2005. Chronobiology: implications for marine resources exploitation and management. Sci. Mar., 69(Suppl. 1): 157-167.

Oakley, S.G. – 1979. Diurnal and seasonal changes in the timing of peak catches of Nephrops norvegicus reflecting changes in behaviour. In: E. Naylor and R.G. Hartnoll (eds.), Cyclical phenomena in marine plants and animals, pp. 367-373. Pergamon Press, Oxford and New York.

Ramazani, R, H.R. Krishnan, S.E. Bergeson and N. Atkinson. – 2007. Computer automated movement detection for the analysis of behaviour. J. Neurosci. Met., 162: 171-179. doi:10.1016/j.jneumeth.2007.01.005

Redlin, U. and N. Morosovsky. – 2004. Nocturnal activity in a diurnal rodent (Arvicanthis niloticus): The importance of masking. J. Biol. Rhythms, 19: 58-67. doi:10.1177/0748730403260371

Refinetti, R. – 2006. Circadian physiology. Francis and Taylor, New York.

Rodland, DL, B.R. Schone, S. Helema, J.K. Nielsen and S. Baier. – 2006. A clockwork mollusc: Ultradian rhythms in bivalve activity revealed by digital photography. J. Exp. Mar. Biol. Ecol., 334: 316-323. doi:10.1016/j.jembe.2006.02.012

Salat, J. – 1996. Review of hydrographyc environmental factors that may influence anchovy habitats in northwestern Mediterranean. Sci. Mar., 60(Suppl 2): 21-32.

Shih, Y. H. and M. S. Young. – 2007. Integrated digital image and accelerometer measurements of rat locomotor and vibratory behaviour. J. Neurosci. Met., 166: 81-88. doi:10.1016/j.jneumeth.2007.07.003

Steger, C., M. Ulrich and C. Wiedemann. – 2007. Machine vision algorithms and applications. Wiley V.C.H., Berlin.

Togasaki, D.M., A. Hsu, M. Samant, B. Farzan, L.E. DeLanney, J.W. Langston, D. Di Monte and M. Quik. – 2005. The webcam system: a simple automated, computer based video system for quantitative measurement of movement in nonhuman primates. J. Neurosci. Met., 145: 159-166. doi:10.1016/j.jneumeth.2004.12.010

Westin, L., R. Gydemo. – 1988. The locomotor activity patterns of juvenile crayfish (Astacus astacus) and effect of shelter availability. Aquaculture, 68: 361-367. doi:10.1016/0044-8486(88)90250-5

Williams, B.G., E. Naylor and T.D. Chatterton. – 1985. The activity patterns of New Zealand mud crabs under field and laboratory conditions. J. Exp. Mar. Biol. Ecol., 89: 269-282. doi:10.1016/0022-0981(85)90132-7

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support