Preliminary evidences of circadian fan activity rhythm in Sabella spallanzanii (Gmelin, 1791) (Polychaeta: Sabellidae)


  • Jacopo Aguzzi Institut de Ciències del Mar (CSIC). Barcelona
  • Juan José Chiesa Departament de Fisiologia, Facultat de Farmacia, Universitat de Barcelona
  • Riccardo Caprioli Laboratory of Experimental Ecology and Aquaculture, Dept. Biology, University of Rome “Tor Vergata”, Rome
  • Davide Cascione Laboratory of Experimental Ecology and Aquaculture, Dept. Biology, University of Rome “Tor Vergata”, Rome
  • Giuseppe Magnifico Laboratory of Experimental Ecology and Aquaculture, Dept. Biology, University of Rome “Tor Vergata”, Rome
  • Valentina Rimatori Laboratory of Experimental Ecology and Aquaculture, Dept. Biology, University of Rome “Tor Vergata”, Rome
  • Corrado Costa Laboratory of Experimental Ecology and Aquaculture, Dept. Biology, University of Rome “Tor Vergata”, Rome



Sabella spallanzanii, fan activity, circadian rhythms, entrainment


The fan activity rhythm of Sabella spallanzanii (Gmelin, 1791) and its entrainment capability to light were studied. Animals were tested under constant darkness (DD) followed by two consecutive 24 h light-darkness regimes: a first 11 h light period (LD) and a second 9 h light period, with its phase inverted (DL). An infrared analogical video-camera took shots each 30 s. A number of pictures with open fan were counted every 15 min. In DD a weak free-running periodicity in the circadian range was found, thus reinforcing the matching of the 24 h period under study in both photoperiod regimes. A nocturnal activity was characterised with a consistent anticipation to lightOFF (i.e. entrainment). Moreover, this phase of entrainment differed between DL and LD. The presence of endogenous activity rhythm with a variable phase angle of entrainment is a distinctive feature of circadian pacemakers.


Download data is not yet available.


Aguzzi, J., P. Abelló, and M. Depledge. – 2004. The endogenous cardiac activity rhythm of the Northwestern Mediterranean Nephrops norvegicus (L.) inhabiting the upper slope. Mar. Freshw. Behav. Physiol., 37: 55-64. doi:10.1080/1023624042000199890

Aguzzi, J., J.J. Chiesa, P. Abelló, and A. Díez-Noguera. – 2005. Temporal modification in cardiac rhythmicity of Nephrops norvegicus (Crustacea: Decapoda) in relation to trawl capture stress. Sci. Mar., 69(3): 369-374.

Aguzzi, J., and J.J. Chiesa. – 2005. Cardiac activity of Nephrops norvegicus (Decapoda: Nephropidae): the relationships between circadian and ultradian rhythms. J. Crust. Biol., 25(4): 577-584. doi:10.1651/C-2606.1

Aschoff, J. – 1981. Free-running and entrained circadian rhythms. In: J. Aschoff (ed.), Handbook of behavioral neurobiology, Vol. 4, pp. 81-93. New York, Plenum Press.

Canal-Corretger, M.M., J. Vilaplana, T. Cambras, and A. Díez- Noguera. – 2001. Functioning of the rat circadian system is modified by light applied in critical postnatal days. Am. J. Physiol. Regul. Integr. Comp. Physiol., 280(4): 1023-1030.

Canal-Corretger, M.M., T. Cambras, and A. Díez-Noguera. – 2003. Effect of light during lactation on the phasic and tonic responses of the rat pacemaker. Chronobiol. Int., 20(1): 21-35. doi:10.1081/CBI-120017690

Clemfuss, H. and P. Clopton. – 1993. Seeking tau: A comparison of six methods. J. Interdiscipl. Cycle Res., 24(1): 1-16.

Costa, C., A. Loy, M. Scardi, S. Cataudella, and D. Davis. – 2006. Extracting fish shape and size using dual underwater cameras. Acquacult. Eng. (in press). doi:10.1016/j.aquaeng.2006.02.003

Currie, D.R., M.A. McArthur, and B.F. Cohen. – 2000. Reproduction and distribution of the invasive European fan worm Sabella spallanzanii (Gmelin) (Polychaeta: Sabellidae) in Port Phillip Bay, Victoria, Australia. Mar. Biol., 136: 645-656. doi:10.1007/s002270050724

Dowse, A., M.S. Dushay, J.C. Hall, and J. Ringo. – 1988. High-resolution analysis of locomotor activity rhythms in a disconnected, visual-system mutant of Drosophila melanogaster. Behav. Gen., 19(4): 529-541. doi:10.1007/BF01066252

Dowse, A., and J.D. Palmer. – 1990. Evidence for ultradian rhythmicity in an intertidal crab. Chronobiology: Its role in clinical medicine, general biology, and agriculture, (B): 691-697.

Dowse, A., and J. Ringo. – 1994. Summing locomotor activity data into “Bins”: how to avoid artifact in spectral analysis. Biol. Rhythms Res., 25(1): 2-14.

Fernández de Miguel, F., and H. Aréchiga. – 1994. Circadian locomotor activity and its entrainment by food in the crayfish Procambarus clarkii. J. Exp. Biol., 190: 9-21.

Garwood, P.R., and P.J.W. Olive. – 1982. The influence of photoperiod on oocyte growth and its role in the control of the reproductive cycle of the polychaete Harmothoe imbricata (L.). Int. J. Inv. Reprod., 5(3): 161-165.

Giangrande, A. – 1991. Behavior, irrigation and respiration in Eudidtyla vancouveri (Polychaeta: Sabellidae). J. Mar. Biol. Ass. U.K., 71: 27-35.

Giangrande, A., and A. Petraroli. – 1994. Observations on reproduction and growth of Sabella spallanzanii (Polychaeta, Sabellidae) in the Mediterranean Sea. Mem. Mus. Nat. Hist., 162: 51-56.

Giangrande, A., M. Licciano, P. Pagliara, and M.C. Gambi. – 2000. Gametogenesis and larval development in Sabella spallanzanii (Polychaeta: Sabellidae) from the Mediterranean Sea. Mar. Biol., 136: 847-861. doi:10.1007/s002279900251

Hammond, R.D., and E. Naylor. – 1977. Effects of dusk and dawn on locomotor activity rhythms in the Norway lobster Nephrops norvegicus. Mar. Biol., 39: 253-260. doi:10.1007/BF00390999

Helfrich-Forster, C. – 2000. Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster — sex-specific differences suggest a different quality of activity. J. Biol. Rhythms, 15(2): 135-154.

Last, K.S., and P.J. W. Olive. – 2004. Interaction between photoperiod and an endogenous seasonal factor in influencing the diel locomotor activity of the benthic polychaete Nereis virens Sars. Biol. Bull., 206(2): 103-112. doi:10.2307/1543541

Last, K.S., P.J.W. Olive, and A.J. Edwards. – 1999. An actographic study of diel activity in the semelparous polychaete Nereis (Neanthes) virens Sars in relation to the annual cycle of growth and reproduction. Invertebr. Reprod. Dev., 35(2): 141-145.

Last, K.S., P.J.W. Olive, and A.J. Edwards. – 2000. Photoperiodic control of growth and regeneration in immature juvenile Nereis (Neanthes) virens. Bull. Mar. Sci., 67(1): 667.

Levine, J.D., P. Funes, H.B. Dowse, and J.C. Hall. – 2002. Signal analysis of behavioural and molecular cycles. BMC Neuroscience, 3(1): 1. doi:10.1186/1471-2202-3-1

Naylor, E. – 1985. Tidally rhythmic behaviour of marine animals. Symp. Soc. Exp. Biol., 39: 63-93.

Naylor, E. – 2005. Chronobiology: implications for marine resources exploitation and management. Sci. Mar., 69(1): 157 167.

Olive, P.J.W. – 1984. Environmental control of reproduction in Polychaeta. Polychaete reproduction in comparative reproductive biology. Forstcher. Zool., 29: 17-38.

Palmer, J.D. – 2000. The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays, 22: 32-37. doi:10.1002/(SICI)1521-1878(200001)22:1<32::AID-BIES7>3.0.CO;2-U

Peterson, E.L. – 1980. A limit cycle interpretation of a mosquito circadian oscillator. J. Theor. Biol., 84(2): 281-310. doi:10.1016/S0022-5193(80)80008-7

Pittendrigh, C.S. – 1981a. Circadian systems: Entrainment. In: J. Aschoff (ed.), Handbook of behavioural neurobiology, Vol. 4, pp. 95-124. New York, Plenum Press.

Pittendrigh, C.S. – 1981b. Circadian systems: General Perspective. In: J. Aschoff (ed.), Handbook of behavioural neurobiology, Vol. 4, pp. 57-80. New York, Plenum Press.

Pittendrigh, C.S., and S. Daan. – 1976. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A clock for all seasons. J. Comp. Physiol., 106: 333-355. doi:10.1007/BF01417860

Riisgård, H.U., and N.M. Ivarsson. – 1990. The crown filament pump of the suspension feeding polychaete Sabella penicillus: filtration, effects of temperature and energy cost. Mar. Ecol. Prog. Ser., 62: 249-257. doi:10.3354/meps062249

Roenneberg, T., S. Daan, and M. Merrow. – 2003. The art of entrainment. J. Biol. Rhythms, 18(3): 183-194. doi:10.1177/0748730403018003001

Saunders, D.S. – 2002. Insects clocks. Elsevier.

Schiedges, K.L. – 1979. Field and laboratory investigations of factors controlling schizogamous reproduction in the polychaete, Autolytus. Int. J. Invertebr. Reprod., 1(6): 359-370.

Warman, G.C., and E. Naylor. – 1995. Evidence for multiple, cuespecific circatidal clock in the shore crab Carcinus maenas. J. Exp. Mar. Biol. Ecol., 189: 93-101. doi:10.1016/0022-0981(95)00014-I

Williams, B.G., E. Naylor, and T.D. Chatterton. – 1985. The activity patterns of New Zealand mud crabs under field and laboratory conditions. J. Exp. Mar. Biol. Ecol., 89: 269-282. doi:10.1016/0022-0981(85)90132-7

Wiedenmann, G. – 1977. Weak and strong phase shifting in the activity rhythm of Leucophaea maderae (Blaberidae) after light pulses of high intensity. Z. Naturforsch., 32: 146-467.




How to Cite

Aguzzi J, Chiesa JJ, Caprioli R, Cascione D, Magnifico G, Rimatori V, Costa C. Preliminary evidences of circadian fan activity rhythm in Sabella spallanzanii (Gmelin, 1791) (Polychaeta: Sabellidae). scimar [Internet]. 2006Dec.30 [cited 2023May31];70(4):727-34. Available from: