Investigacion de los patrones espacio-temporales de la temperatura media y el nivel trófico medio de las capturas de la campaña MEDITS en el Mediterráneo

Autores/as

DOI:

https://doi.org/10.3989/scimar.04835.12A

Palabras clave:

temperatura media de la captura, nivel trófico, temperatura del fondo, tendencias, Mediterráneo, presión pesquera, calentamiento marino, cambio climático

Resumen


Se analizaron los patrones espaciotemporales de la temperatura media inferida (TMI) y el nivel trófico medio (NTM) de las capturas de la campaña MEDITS en trece áreas (GSAs) del Mediterráneo entre 1994 y 2016. El estudio pretendía detectar cambios en la estructura de la comunidad demersal relacionados con impactos antropogénicos. Se utilizó un modelo aditivo generalizado (GAM) para examinar los efectos del año y GSA sobre la temperatura del fondo y los índices de TMI y NTM. De las trece GSAs analizadas, el año y la TMI solo fueron significativos en cuatro y cinco áreas, respectivamente. Los mayores valores de NTM se observaron en el centro y el este del Mediterráneo. La temperatura del fondo aumentó desde el año 2010, así como de oeste a este y de norte a sur. Nuestros resultados indicaron que el reciente incremento de temperatura del fondo observado en el Mediterráneo no ha dado lugar a una respuesta inmediata en las comunidades demersales; no obstante, en áreas con mayores niveles de calentamiento o de menores profundidades las comunidades fueron más susceptibles a dicho calentamiento. En cuanto al NTM, solo se observaron tendencias decrecientes en dos GSAs, mientras que los patrones temporales detectados en cinco GSAs posiblemente reflejaron cambios en la actividad pesquera. Sin embargo, se observaron mayores valores de NTM en GSAs con mayores niveles de explotación, indicando que otros factores, aparte de la pesca, juegan un papel importante en la estructuración de las comunidades marinas. Los resultados del estudio indican la existencia de diferencias en la estructura de las comunidades entre subáreas del Mediterráneo que podrían ser atribuidas a diferencias en las condiciones ambientales y en los patrones de explotación que afectan a la ecología y dinámica de los stocks.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anonymous 2017. MEDITS Handbook, Version 8. http://www.sibm.it/MEDITS%202011/principaledownload.htm

Albo-Puigserver M., Navarro J., Coll M., et al. 2016. Trophic structure of pelagic species in the northwestern Mediterranean Sea. J. Sea Res. 117: 27-35. https://doi.org/10.1016/j.seares.2016.09.003

Alheit J., Licandro P., Coombs S., et al. 2014. Atlantic Multi-decadal Oscillation (AMO) modulates dynamics of small pelagic fishes and ecosystem regime shifts in the eastern North and Central Atlantic. J. Mar. Syst. 131: 21-35. https://doi.org/10.1016/j.jmarsys.2013.11.002

Belkin M. 2009. Rapid warming of large marine ecosystems. Progr. Oceanogr. 81: 207-213. https://doi.org/10.1016/j.pocean.2009.04.011

Bertrand J., De Sola L., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17. https://doi.org/10.3989/scimar.2002.66s29

Bosc E., Bricaud A., Antoine D. 2004. Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations. Global Biogeochem. Cycles 18: GB1005. https://doi.org/10.1029/2003GB002034

Branch T.A. 2012. FAO's state of fisheries and aquaculture: Correcting some misrepresentations by Pauly and Froese. Mar. Policy 36: 1191-1192. https://doi.org/10.1016/j.marpol.2012.02.026

Branch T.A., Watson R., Fulton E.A., et al. 2010. The trophic fingerprint of marine fisheries. Nature 468: 431-435. https://doi.org/10.1038/nature09528 PMid:21085178

Botsford L.W., Castilla J.C., Peterson C.H. 1997. The Management of Fisheries and Marine Ecosystems. Science 277: 509-515. https://doi.org/10.1126/science.277.5325.509

Brind'Amour A., Rochet M-J., Ordines F., et al. 2016. Environmental drivers explain regional differences of fish and invertebrate functional group changes across the Mediterranean Sea. Mar. Ecol. Prog. Ser. 562: 19-35. https://doi.org/10.3354/meps11912

Caddy J.F., Csirke J., Garcia S.M., et al. 1998. How pervasive is "Fishing down marine food webs"? Science 282: 1383. https://doi.org/10.1126/science.282.5393.1383a

Cheung W.W.L., Lam V.W.Y., Sarmiento J.L., et al. 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biol. 16: 24-35. https://doi.org/10.1111/j.1365-2486.2009.01995.x

Cheung W.W.L., Watson R., Pauly D. 2013. Signature of ocean warming in global fisheries catch. Nature 497: 365-369. https://doi.org/10.1038/nature12156 PMid:23676754

Dayton P.K., Thrush S.F., Agardy M.T., et al. 1995. Environmental effects of marine fishing. Aquatic Conserv: Mar. Freshw. Ecosyst. 5: 205-232. https://doi.org/10.1002/aqc.3270050305

Durrieu de Madron X., Guieu C., Sempere R., et al. 2011. Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean. Prog. Oceanogr. 91: 97-166.

FAO. 2002. The Ecosystem Approach to Fisheries. FAO Fish. Tech. Paper 443: 1-71.

Galil B.S. 2006. The Marine Caravan - The Suez Canal and the Erythrean Invasion. In: Gollasch S., Galil B.S., Cohen A.N. (eds), Bridging Divides. Springer, Dordrecht, pp. 207-300. https://doi.org/10.1007/978-1-4020-5047-3_6 PMid:16553541

Gancitano V., Enea M., Colloca F., et al. 2015. Temporal dynamics of demersal resources in the south of Sicily (GSA 16) during the last twenty years. Biol. Mar. Mediterr. 22: 166-167.

Givan O., Edelist D., Sonin O., et al. 2018. Thermal affinity as the dominant factor changing Mediterranean fish abundances. Global Change Biol. 24: 1365-2486. https://doi.org/10.1111/gcb.13835 PMid:28727210

Golani D., Orsi-Relin, L., Massuti E., et al. 2002. Fishes. In: F. Briand (ed.), CIESM Atlas of Exotic Species in the Mediterranean, Vol I. CIESM Publisher, Monaco, 256 pp.

Hastie T.J., Tibshirani R.J. 1990. Generalized additive models. Chapman and Hall, London, 352 pp.

Ignatiades L., Gotsis-Skretas O., Pagou K. et al. 2009. Divesification of phytoplankton community structure and related parameters along a large-scale longitudinal east-west transect of the Mediterranean Sea. J. Plankton Res. 31: 411-428. https://doi.org/10.1093/plankt/fbn124

Karachle P.K., Stergiou K.I. 2017. An update on the feeding habits of fish in the Mediterranean Sea (2002-2015). Med. Mar. Sci. 18: 43-52. https://doi.org/10.12681/mms.1968

Kasapides P., Peristeraki P., Tserpes G., et al. 2007. A new record of the Lessepsian invasive fish Etrumeus teres (Osteichthyes: Clupeidae) in the Mediterranean Sea (Aegean, Greece). Aquat. Invasions 2: 152-154. https://doi.org/10.3391/ai.2007.2.2.12

Keskin C., Pauly D. 2014.Changes in the 'Mean Temperature of the Catch': application of a new concept to the North-eastern Aegean Sea. Acta Adriat. 55: 213-218.

Keskin C. Pauly D. 2018: Reconciling Trends of Mean Trophic Index and Mean Temperature of the Catch in the Eastern Mediterranean and Black Seas. Medit. Mar. Sci. 19: 79-83. https://doi.org/10.12681/mms.1882

Lasram F.B.R, Guilhaumon F., Albouy C., et al. 2010. The Mediterranean Sea as a "cul-de-sac" for endemic fishes facing climate change. Global Chang. Biol. 16: 3233-3245. https://doi.org/10.1111/j.1365-2486.2010.02224.x

Lykousis V, Chronis G, Tselepides A., et al. 2002. Major outputs of the recent multidisciplinary biochemical researches undertaken in the Aegean Sea. J. Mar. Syst. 33-34: 313-334. https://doi.org/10.1016/S0924-7963(02)00064-7

Macias D, Garcia-Gorriz E, Stips A. 2013. Understanding the Causes of Recent Warming of Mediterranean Waters. How Much Could Be Attributed to Climate Change? PLoS ONE 8: e81591. https://doi.org/10.1371/journal.pone.0081591 PMid:24312322

Mannini A., Sabatella R.F. 2015. Annuario sullo stato delle risorse e sulle strutture produttive dei mari italiani. Biol. Mar. Mediterr. 22 (Suppl. 1): 1-358.

Moutin T., Raimbault P. 2001. Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J. Mar. Syst. 33-34: 273-288. https://doi.org/10.1016/S0924-7963(02)00062-3

MyOcean. 2014. MyOcean products. http://www.myocean.eu

Odum E.P. 1985. Trends expected in stressed ecosystems. BioScience 35: 419-422. https://doi.org/10.2307/1310021

Pauly D., Christensen V., Dalsgaard J., et al. 1998. Fishing down marine food webs. Science 279: 860-863. https://doi.org/10.1126/science.279.5352.860 PMid:9452385

Peristeraki P., Lazarakis G., Skarvelis K., et al. 2007. Additional records on the occurrence of alien fish species in the eastern Mediterranean Sea. Med. Mar. Sci. 7: 61-67. https://doi.org/10.12681/mms.170

Peristeraki P., Tserpes G., Lampadariou N., et al. 2017. Comparing demersal megafaunal species diversity along the depth gradient within the South Aegean and Cretan Seas (Eastern Mediterranean). PLoS ONE 12: e0184241. https://doi.org/10.1371/journal.pone.0184241 PMid:28873395

Piroddi C., Coll M., Liquete C., et al. 2017. Historical changes of the Mediterranean Sea ecosystem: modelling the role and impact of primary productivity and fisheries changes over time. Sci. Rep. 7: 44491. https://doi.org/10.1038/srep44491 PMid:28290518

Rixen M., Beckers J-M., Levitus S., et al. 2005. The Western Mediterranean deep water: a proxy for climate change. Geophys. Res. Lett. 32: L12608. https://doi.org/10.1029/2005GL022702

Scientific Technical and Economic Committee for Fisheries (STECF). 2013. Assessment of Mediterranean Sea stocks part I. (STECF 13-22). Publications Office of the European Union, Luxembourg, EUR 26329 EN, JRC 86087: 400 pp.

Scientific, Technical and Economic Committee for Fisheries (STECF). 2015. Mediterranean assessments, part 1(STECF-15-18). Publications Office of the European Union, Luxembourg, EUR 27638 EN, JRC 98676, 410 pp.

Skliris N., Sofianos S., Gkanasos A., et al. 2011. Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean. Dyn. 62: 13-30. https://doi.org/10.1007/s10236-011-0493-5

Souplet A. 1996. Calculation of abundance indices and length frequencies in the MEDITS survey. In: Bertrand J.A. et al. (eds), Campagne internationale du chalutage démersal en Méditerranée. Campagne 1995. EU Final Report, Vol. III.

Soto-Navarro F.J., Criado-Aldeanueva F. 2012. Model Thermohaline Trends in the Mediterranean Sea during the Last Years: A Change with Respect to the Last Decades? Sci. World J. 2012: 365698. https://doi.org/10.1100/2012/365698 PMid:22654595

Sylaios G.K., Koytroumanidis T., Tsicliras A.C. 2010. Ranking and classification of fishing areas using fuzzy models and techniques. Fish. Manag. Ecol. 17: 240-253. https://doi.org/10.1111/j.1365-2400.2009.00714.x

Tserpes G., Tzanatos E., Peristeraki P. 2011. Spatial management of the Mediterranean bottom-trawl fisheries: the case of the southern Aegean Sea. Hydrobiologia 670: 267-274. https://doi.org/10.1007/s10750-011-0667-7

Tsikliras A.C., Stergiou K.I. 2014. The mean temperature of the catch increases quickly in the Mediterranean Sea. Mar. Ecol. Progr. Ser. 515: 281-284. https://doi.org/10.3354/meps11005

Tsikliras A.C., Peristeraki P., Tserpes G., et al. 2015. Mean temperature of the catch (MTC) in the Greek Seas based on landings and Survey data. Front. Mar. Sci. 2: 23. https://doi.org/10.3389/fmars.2015.00023

Tzanatos E., Raitsos D.E., Triantafyllou G., et al. 2014. Indications of a climate effect on Mediterranean fisheries. Clim. Chang. 122: 41-54. https://doi.org/10.1007/s10584-013-0972-4

Valls M., Sweeting C.J., Olivar M.P., et al. 2014. Structure and dynamics of food webs in the water column on shelf and slope grounds of the western Mediterranean. J. Mar. Syst. 138: 171-181. https://doi.org/10.1016/j.jmarsys.2014.04.002

Vasilakopoulos P., Maravelias C.D., Tserpes G. 2014. The Alarming Decline of Mediterranean Fish Stocks. Curr. Biol. 24: 1643-1648. https://doi.org/10.1016/j.cub.2014.05.070 PMid:25017210

Wood S.N. 2006. Generalized Additive Models: An introduction with R. Chapman and Hall/CRC, Florida, 391 pp. https://doi.org/10.1201/9781420010404

Publicado

2019-12-30

Cómo citar

1.
Peristeraki P, Bitetto I, Carbonara P, Carlucci R, Certain G, De Carlo F, Gristina M, Kamidis N, Pesci P, Stagioni M, Valls M, Tserpes G. Investigacion de los patrones espacio-temporales de la temperatura media y el nivel trófico medio de las capturas de la campaña MEDITS en el Mediterráneo. Sci. mar. [Internet]. 30 de diciembre de 2019 [citado 13 de mayo de 2024];83(S1):165-74. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1795

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 > >>