Fuentes potenciales de alimento en Glycymeris nummaria (Mollusca: Bivalvia) durante el ciclo anual a partir del análisis de ácidos graso

Autores/as

  • Mirjana Najdek Institute “Ruđer Bošković”, Centre for Marine Research
  • Daria Ezgeta-Balić Institute of Oceanography and Fisheries
  • Maria Blažina Institute “Ruđer Bošković”, Centre for Marine Research
  • Marija Crnčević Public Institution for the Management of Protected Natural Values in the Dubrovnik-Neretva County
  • Melita Peharda Institute of Oceanography and Fisheries

DOI:

https://doi.org/10.3989/scimar.04267.23A

Palabras clave:

ecología trófica, bivalvo, Glycymerididae, Adriático, Bahía Mali Ston

Resumen


Se han investigado los cambios estacionales en las fuentes de alimentación de poblaciones naturales del bivalvo Glycymeris nummaria en la bahía Mali Ston (Croacia) por medio del análisis de los perfiles de ácidos grasos de la glándula digestiva y del tejido muscular. El total de lípidos tanto de la glándula digestiva como en el músculo aductor mostró cambios similares después del principal evento de freza (septiembre). En la glándula digestiva los ácidos grasos saturados fueron altamente dominantes (hasta el 82%), lo que señala a los detritos como principal fuente de alimentación de esta especie. Este tipo de alimento prevalece durante el otoño/invierno, mientras que en primavera/verano la alimentación se complementa con fitoplancton y, en menor medida, con zooplancton. La composición de ácidos grasos en el tejido muscular indica una alta eficiencia en la utilización del alimento ingerido mediante la retención de los ácidos grasos poliinsaturados (PUFA) de la dieta durante todo el periodo investigado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Allan E.L., Ambrose S.T., Richoux N.B., et al. 2010. Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: Stable isotope and fatty acid signatures. Est. Coast. Shelf Sci. 87: 463-471. http://dx.doi.org/10.1016/j.ecss.2010.02.004

Beninger P.G., Lucas A. 1984. Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams and Reeve). J. Exp. Mar. Biol. Ecol. 79: 19-37. http://dx.doi.org/10.1016/0022-0981(84)90028-5

Bergé J.P., Barnathan G. 2005. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Engin./Biotechnol. 96: 49-125. http://dx.doi.org/10.1007/b135782

Bligh E.G., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37: 910-917. http://dx.doi.org/10.1139/o59-099 PMid:13671378

Buseli? I., Peharda M., Reynolds D.J., et al. 2015. Glycymeris bimaculata (Poli, 1795) – a new sclerochronological archive for the Mediterranean? J. Sea Res. 95: 139-148.

Comeau L.A., Sonier R., Lanteigne L., et al. 2010. A novel approach to measuring chlorophyll uptake by cultivated oysters. Aquac. Eng. 43: 71-77. http://dx.doi.org/10.1016/j.aquaeng.2010.06.002

Calic M., Cari? M., Krsinic F., et al. 2013. Controlling factors of phytoplankton seasonal succession in oligotrophic Mali Ston Bay (south-eastern Adriatic). Environ. Monit. Assess. 185: 7543-7563. http://dx.doi.org/10.1007/s10661-013-3118-2 PMid:23417779

Crncevic M., Peharda M., Ezgeta-Bali? D., et al. 2013. Reproductive cycle of Glycymeris nummaria (Linnaeus, 1758) (Mollusca: Bivalvia) from Mali Ston Bay, Adriatic Sea, Croatia. Sci. Mar. 77: 293-300. http://dx.doi.org/10.3989/scimar.03722.10A

Dalsgaard J., John M.S., Kattner G., et al. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46: 229-352. http://dx.doi.org/10.1016/S0065-2881(03)46005-7

Davenport J., Ezgeta-Bali? D., Peharda M., et al. 2011. Size-differential feeding in Pinna nobilis L. (Mollusca: Bivalvia): exploitation of detritus, phytoplankton and zooplankton. Est. Coast. Shelf. Sci. 92: 246-254. http://dx.doi.org/10.1016/j.ecss.2010.12.033

Delaporte M., Soudant P., Moal J., et al. 2005. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp. Biochem. Physiol. A. 140(4): 460-470. http://dx.doi.org/10.1016/j.cbpb.2005.02.009 PMid:15936706

De Moreno J.E.A., Moreno V.J., Brenner R.R. 1976. Lipid metabolism of the yellowclam, Mesodesma mactroides: I. Composition of the lipids. Lipids 11: 334-340. http://dx.doi.org/10.1007/BF02544063 PMid:1263776

Deudero S., Cabanellas M., Blanco A., et al. 2009. Stable isotope fractionation in the digestive gland, muscle and gills tissues of the marine mussel Mytilus galloprovincialis. J. Exp. Mar. Biol. Ecol. 368: 181-188. http://dx.doi.org/10.1016/j.jembe.2008.10.008

Dupcic-Radic I., Caric M., Najdek M., et al. 2014. Biochemical and fatty acid composition of Arca noae (Bivalvia: Arcidae) from the Mali Ston Bay, Adriatic Sea. Med. Mar. Sci. 15(3): 520-531.

Ezgeta-Balic D., Najdek M., Peharda M., et al. 2012. Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334-337: 89-100. http://dx.doi.org/10.1016/j.aquaculture.2011.12.041

Ezgeta-Bali? D., Lojen S., Dolenec T., et al. 2014. Seasonal differences of stable isotope composition and lipid content in four bivalve species from the Adriatic Sea. Mar. Biol. Res. 10(6): 625-634.

Freites L., Labarta U., Fernandez-Reiriz M.J. 2002. Evolution of fatty acid profiles of subtidal and rocky shore mussel seed (Mytilus galloprovincialis, Lmk.). Influence of environmental parameters. J. Exp. Mar. Biol. Ecol. 268: 185-204. http://dx.doi.org/10.1016/S0022-0981(01)00377-X

Galap C., Leboulenger F., Grillot J.-P. 1997. Seasonal variation in biochemical constituents during the reproductive cycle of the female dog cockle Glycymeris glycymeris. Mar. Biol. 129: 625-634. http://dx.doi.org/10.1007/s002270050205

Galap C., Netchitaılo P., Leboulenger F., et al. 1999. Variations of fatty acid contents in selected tissues of the female dog cockle (Glycymeris glycymeris L., Mollusca, Bivalvia) during the annual cycle. Comp. Biochem. Physiol., A. 122: 241-254. http://dx.doi.org/10.1016/S1095-6433(99)00006-9

Gofas S., Moreno D., Salas C. 2011. Moluscos Marinos de Andalucía. Vol. 2. Servicio de Publicaciones, Universidad de Málaga, 343-798 pp.

Hurtado M.A., Racotta I.S., Arcos F., et al. 2012. Seasonal variations of biochemical, pigment, fatty acid, and sterol compositions in female Crassostrea corteziensis oysters in relation to the reproductive cycle. Comp. Biochem. Physiol. B. 163: 172-183. http://dx.doi.org/10.1016/j.cbpb.2012.05.011 PMid:22613818

Legac M., Hrs-Brenko M. 1999. A review of bivalve species in the eastern Adriatic Sea. III. Pteriomorpha (Glycymerididae). Nat. Croat. 8: 9-25.

Lehane C., Davenport J. 2002. Ingestion of mesozooplankton by three species of bivalve, Mytilus edulis, Cerastoderma edule and Aequipecten opercularis. J. Mar. Biol. Ass. U.K. 82: 615-619. http://dx.doi.org/10.1017/S0025315402005957

Lehane C., Davenport J. 2004. Ingestion of bivalve larvae by Mytilus edulis: experimental and field demonstration of larviphagy in farmed blue mussels. Mar. Biol. 145: 101-107. http://dx.doi.org/10.1007/s00227-003-1290-6

MacDonald B.A., Thompson R.J. 1986. Influence of temperature and food availability on the ecological energetic of the giant scallop Placopecten magellanicus III. Physiological ecology, the gametogenetic cycle and scope for growth. Mar. Biol. 93: 37-48. http://dx.doi.org/10.1007/BF00428653

Mayzaud P., Chanut J.P., Ackman R.G. 1989. Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar. Ecol. Prog. Ser. 56: 189-204. http://dx.doi.org/10.3354/meps056189

Morrison W.R., Smith L.M. 1964. Preparation of fatty acid methylesters and dimethylacetals from lipids with boron fluoride– methanol. J. Lipid Res. 5: 600-608. PMid:14221106

Najdek M., Degobbis D., Miokovic D., et al. 2002. Fatty acid and phytoplankton composition of different types of mucilaginous aggregates in the northern Adriatic. J. Plankton Res. 24: 429-441. http://dx.doi.org/10.1093/plankt/24.5.429

Najdek M., Blazina M., Ezgeta-Balic D., et al. 2013. Diets of fan shells (Pinna nobilis) of different sizes: fatty acid profiling of digestive gland and adductor muscle. Mar. Biol. 160: 921-930. http://dx.doi.org/10.1007/s00227-012-2144-x

Nerot C., Lorrain A., Grall J., et al. 2012. Stable isotope variation in benthic filter feeders across a large depth gradient on the continental shelf. Est. Coast. Shelf. Sci. 96: 228-235. http://dx.doi.org/10.1016/j.ecss.2011.11.004

Palacios E., Racotta I.S., Kraffe E., et al. 2005. Lipid composition of the giant lion's pawscallop (Nodipecten subnodosus) in relation to gametogenesis I. Fatty acids. Aquaculture 250: 270-282. http://dx.doi.org/10.1016/j.aquaculture.2005.04.070

Paulet Y.-M., Lorrain A., Richard J., et al. 2006. Experimental shift in diet ?13C: A potential tool for ecophysiological studies in marine bivalves. Org. Geochem. 37: 1359-1370. http://dx.doi.org/10.1016/j.orggeochem.2006.01.008

Peharda M., Ezgeta-Balic D., Vrgoc N., et al. 2010. Description of bivalve community structure in the Croatian part of the Adriatic Sea – hydraulic dredge survey. Acta Adriat. 51: 144-158.

Peharda M., Crncevic M., Buseli? I., et al. 2012a. Growth and longevity of Glycymeris nummaria (Linnaeus, 1758) from the eastern Adriatic, Croatia. J. Shellfish Res. 31: 947-950. http://dx.doi.org/10.2983/035.031.0406

Peharda M., Ezgeta-Balic D., Davenport J., et al. 2012b. Differential ingestion of zooplankton by four species of bivalves (Mollusca) in Mali Ston Bay, Croatia. Mar. Biol. 159(4): 881-895. http://dx.doi.org/10.1007/s00227-011-1866-5

Pernet F., Tremblay R., Comeau L., et al. 2007. Temperature adaptation in two bivalve species from different thermal habitat: energetic and remodeling of membrane lipids. J. Exp. Biol. 210: 2999-3014. http://dx.doi.org/10.1242/jeb.006007 PMid:17704075

Perez V., Olivier F., Tremblay R., et al. 2013. Trophic resources of the bivalve, Venus verrucosa, in the Chausey archipelago (Normandy, France) determined by stable isotopes and fatty acids. Aquat. Living Resour. 26(03): 229-239. http://dx.doi.org/10.1051/alr/2013058

Pirini M., Manuzzi M.P, Pagliarani A., et al. 2007. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp. Biochem. Physiol. B. 147: 616-626. http://dx.doi.org/10.1016/j.cbpb.2007.04.003 PMid:17482494

Poppe G.T., Goto Y. 2000. European Seashells. Volume II. (Scaphopoda, Bivalvia, Cephalopoda). ConchBooks, Hackenheim, 221 pp.

Rinaldi E. 2002. Glycymeris (Glycymeris) insubrica (Brocchi, 1874) nelle acque antisanti la costa Romagnola (Mollusca, Bivalvia, Glycymerididae). Quad. Studi Nat. Romagna 16: 15-20.

Royer C., Thébault J., Chauvaud L., et al. 2013. Structural analysis and paleoenvironmental potential of dog cockle shells (Glycymeris glycymeris) in Brittany, northwest France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373: 123-132. http://dx.doi.org/10.1016/j.palaeo.2012.01.033

Savina M., Pouvreau S. 2004. A comparative ecophysiological study of two infaunal filter-feeding bivalves: Paphia rhomboides and Glycymeris glycymeris. Aquaculture 239: 289-306. http://dx.doi.org/10.1016/j.aquaculture.2004.05.029

Schöne B.R., Zhang Z., Radermacher P., et al. 2011. Sr/Ca and Mg/ Ca ratios of ontogenetically old, long-lived bivalve shells Arctica islandica) and their function as palaeotemperature proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302: 52-64. http://dx.doi.org/10.1016/j.palaeo.2010.03.016

Shin P.K.S., Yip K.M., Xu W.Z., et al. 2008. Fatty acids as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels. J. Exp. Mar. Biol. Ecol. 357: 75-84. http://dx.doi.org/10.1016/j.jembe.2008.01.002

Soudant P., van Ryckeghem K., Marty Y., et al. 1999. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific oyster Crassostrea gigas. Comp. Biochem. Physiol. B. 123: 209-222. http://dx.doi.org/10.1016/S0305-0491(99)00063-2

Trider D.J., Castell J.D. 1980. Influence of neutral lipid on seasonal variation of total lipid in oysters, Crassostrea virginica. Proc. Natl. Shellfish Ass. 70: 112-118.

Ventrella V., Pirini M., Pagliarani A., et al. 2008. Effect of temporal and geographic factors on fatty acid composition of M. galloprovincialis from the Adriatic Sea. Comp. Biochem. Physiol. B. 149: 241-250. http://dx.doi.org/10.1016/j.cbpb.2007.09.012 PMid:17977043

Zhukova N.V. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids inmollusks. Comp. Biochem. Physiol. B. 100: 801-804 . http://dx.doi.org/10.1016/0305-0491(91)90293-M

Publicado

2016-03-30

Cómo citar

1.
Najdek M, Ezgeta-Balić D, Blažina M, Crnčević M, Peharda M. Fuentes potenciales de alimento en Glycymeris nummaria (Mollusca: Bivalvia) durante el ciclo anual a partir del análisis de ácidos graso. Sci. mar. [Internet]. 30 de marzo de 2016 [citado 1 de mayo de 2025];80(1):123-9. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1618

Número

Sección

Artículos