Potential food sources of Glycymeris nummaria (Mollusca: Bivalvia) during the annual cycle indicated by fatty acid analysis
DOI:
https://doi.org/10.3989/scimar.04267.23AKeywords:
feeding ecology, bivalve, Glycymerididae, Adriatic Sea, Mali StonAbstract
Seasonal changes of food sources were investigated by analysing the fatty acid profiles of digestive gland and muscle tissues of the naturally occurring clams Glycymeris nummaria in Mali Ston Bay, Croatia. Total lipids in the digestive gland and the adductor muscle showed parallel changes, with a maximum after the main spawning event in September. In the digestive gland saturated fatty acids were highly dominant (up to 82%), indicating detritus as the main food source for this species. This type of food prevailed during the autumn/winter period, in contrast to the spring/summer period when detritus was enriched with phyto- and, to a lesser extent, zooplankton. Fatty acid composition of muscles indicated highly efficient utilization of ingested food through significant retention of polyunsaturated fatty acid from the clams’ diet during the entire period investigated.
Downloads
References
Allan E.L., Ambrose S.T., Richoux N.B., et al. 2010. Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: Stable isotope and fatty acid signatures. Est. Coast. Shelf Sci. 87: 463-471. http://dx.doi.org/10.1016/j.ecss.2010.02.004
Beninger P.G., Lucas A. 1984. Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams and Reeve). J. Exp. Mar. Biol. Ecol. 79: 19-37. http://dx.doi.org/10.1016/0022-0981(84)90028-5
Bergé J.P., Barnathan G. 2005. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Engin./Biotechnol. 96: 49-125. http://dx.doi.org/10.1007/b135782
Bligh E.G., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37: 910-917. http://dx.doi.org/10.1139/o59-099 PMid:13671378
Buseli? I., Peharda M., Reynolds D.J., et al. 2015. Glycymeris bimaculata (Poli, 1795) – a new sclerochronological archive for the Mediterranean? J. Sea Res. 95: 139-148.
Comeau L.A., Sonier R., Lanteigne L., et al. 2010. A novel approach to measuring chlorophyll uptake by cultivated oysters. Aquac. Eng. 43: 71-77. http://dx.doi.org/10.1016/j.aquaeng.2010.06.002
Calic M., Cari? M., Krsinic F., et al. 2013. Controlling factors of phytoplankton seasonal succession in oligotrophic Mali Ston Bay (south-eastern Adriatic). Environ. Monit. Assess. 185: 7543-7563. http://dx.doi.org/10.1007/s10661-013-3118-2 PMid:23417779
Crncevic M., Peharda M., Ezgeta-Bali? D., et al. 2013. Reproductive cycle of Glycymeris nummaria (Linnaeus, 1758) (Mollusca: Bivalvia) from Mali Ston Bay, Adriatic Sea, Croatia. Sci. Mar. 77: 293-300. http://dx.doi.org/10.3989/scimar.03722.10A
Dalsgaard J., John M.S., Kattner G., et al. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46: 229-352. http://dx.doi.org/10.1016/S0065-2881(03)46005-7
Davenport J., Ezgeta-Bali? D., Peharda M., et al. 2011. Size-differential feeding in Pinna nobilis L. (Mollusca: Bivalvia): exploitation of detritus, phytoplankton and zooplankton. Est. Coast. Shelf. Sci. 92: 246-254. http://dx.doi.org/10.1016/j.ecss.2010.12.033
Delaporte M., Soudant P., Moal J., et al. 2005. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp. Biochem. Physiol. A. 140(4): 460-470. http://dx.doi.org/10.1016/j.cbpb.2005.02.009 PMid:15936706
De Moreno J.E.A., Moreno V.J., Brenner R.R. 1976. Lipid metabolism of the yellowclam, Mesodesma mactroides: I. Composition of the lipids. Lipids 11: 334-340. http://dx.doi.org/10.1007/BF02544063 PMid:1263776
Deudero S., Cabanellas M., Blanco A., et al. 2009. Stable isotope fractionation in the digestive gland, muscle and gills tissues of the marine mussel Mytilus galloprovincialis. J. Exp. Mar. Biol. Ecol. 368: 181-188. http://dx.doi.org/10.1016/j.jembe.2008.10.008
Dupcic-Radic I., Caric M., Najdek M., et al. 2014. Biochemical and fatty acid composition of Arca noae (Bivalvia: Arcidae) from the Mali Ston Bay, Adriatic Sea. Med. Mar. Sci. 15(3): 520-531.
Ezgeta-Balic D., Najdek M., Peharda M., et al. 2012. Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334-337: 89-100. http://dx.doi.org/10.1016/j.aquaculture.2011.12.041
Ezgeta-Bali? D., Lojen S., Dolenec T., et al. 2014. Seasonal differences of stable isotope composition and lipid content in four bivalve species from the Adriatic Sea. Mar. Biol. Res. 10(6): 625-634.
Freites L., Labarta U., Fernandez-Reiriz M.J. 2002. Evolution of fatty acid profiles of subtidal and rocky shore mussel seed (Mytilus galloprovincialis, Lmk.). Influence of environmental parameters. J. Exp. Mar. Biol. Ecol. 268: 185-204. http://dx.doi.org/10.1016/S0022-0981(01)00377-X
Galap C., Leboulenger F., Grillot J.-P. 1997. Seasonal variation in biochemical constituents during the reproductive cycle of the female dog cockle Glycymeris glycymeris. Mar. Biol. 129: 625-634. http://dx.doi.org/10.1007/s002270050205
Galap C., Netchitaılo P., Leboulenger F., et al. 1999. Variations of fatty acid contents in selected tissues of the female dog cockle (Glycymeris glycymeris L., Mollusca, Bivalvia) during the annual cycle. Comp. Biochem. Physiol., A. 122: 241-254. http://dx.doi.org/10.1016/S1095-6433(99)00006-9
Gofas S., Moreno D., Salas C. 2011. Moluscos Marinos de Andalucía. Vol. 2. Servicio de Publicaciones, Universidad de Málaga, 343-798 pp.
Hurtado M.A., Racotta I.S., Arcos F., et al. 2012. Seasonal variations of biochemical, pigment, fatty acid, and sterol compositions in female Crassostrea corteziensis oysters in relation to the reproductive cycle. Comp. Biochem. Physiol. B. 163: 172-183. http://dx.doi.org/10.1016/j.cbpb.2012.05.011 PMid:22613818
Legac M., Hrs-Brenko M. 1999. A review of bivalve species in the eastern Adriatic Sea. III. Pteriomorpha (Glycymerididae). Nat. Croat. 8: 9-25.
Lehane C., Davenport J. 2002. Ingestion of mesozooplankton by three species of bivalve, Mytilus edulis, Cerastoderma edule and Aequipecten opercularis. J. Mar. Biol. Ass. U.K. 82: 615-619. http://dx.doi.org/10.1017/S0025315402005957
Lehane C., Davenport J. 2004. Ingestion of bivalve larvae by Mytilus edulis: experimental and field demonstration of larviphagy in farmed blue mussels. Mar. Biol. 145: 101-107. http://dx.doi.org/10.1007/s00227-003-1290-6
MacDonald B.A., Thompson R.J. 1986. Influence of temperature and food availability on the ecological energetic of the giant scallop Placopecten magellanicus III. Physiological ecology, the gametogenetic cycle and scope for growth. Mar. Biol. 93: 37-48. http://dx.doi.org/10.1007/BF00428653
Mayzaud P., Chanut J.P., Ackman R.G. 1989. Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar. Ecol. Prog. Ser. 56: 189-204. http://dx.doi.org/10.3354/meps056189
Morrison W.R., Smith L.M. 1964. Preparation of fatty acid methylesters and dimethylacetals from lipids with boron fluoride– methanol. J. Lipid Res. 5: 600-608. PMid:14221106
Najdek M., Degobbis D., Miokovic D., et al. 2002. Fatty acid and phytoplankton composition of different types of mucilaginous aggregates in the northern Adriatic. J. Plankton Res. 24: 429-441. http://dx.doi.org/10.1093/plankt/24.5.429
Najdek M., Blazina M., Ezgeta-Balic D., et al. 2013. Diets of fan shells (Pinna nobilis) of different sizes: fatty acid profiling of digestive gland and adductor muscle. Mar. Biol. 160: 921-930. http://dx.doi.org/10.1007/s00227-012-2144-x
Nerot C., Lorrain A., Grall J., et al. 2012. Stable isotope variation in benthic filter feeders across a large depth gradient on the continental shelf. Est. Coast. Shelf. Sci. 96: 228-235. http://dx.doi.org/10.1016/j.ecss.2011.11.004
Palacios E., Racotta I.S., Kraffe E., et al. 2005. Lipid composition of the giant lion's pawscallop (Nodipecten subnodosus) in relation to gametogenesis I. Fatty acids. Aquaculture 250: 270-282. http://dx.doi.org/10.1016/j.aquaculture.2005.04.070
Paulet Y.-M., Lorrain A., Richard J., et al. 2006. Experimental shift in diet ?13C: A potential tool for ecophysiological studies in marine bivalves. Org. Geochem. 37: 1359-1370. http://dx.doi.org/10.1016/j.orggeochem.2006.01.008
Peharda M., Ezgeta-Balic D., Vrgoc N., et al. 2010. Description of bivalve community structure in the Croatian part of the Adriatic Sea – hydraulic dredge survey. Acta Adriat. 51: 144-158.
Peharda M., Crncevic M., Buseli? I., et al. 2012a. Growth and longevity of Glycymeris nummaria (Linnaeus, 1758) from the eastern Adriatic, Croatia. J. Shellfish Res. 31: 947-950. http://dx.doi.org/10.2983/035.031.0406
Peharda M., Ezgeta-Balic D., Davenport J., et al. 2012b. Differential ingestion of zooplankton by four species of bivalves (Mollusca) in Mali Ston Bay, Croatia. Mar. Biol. 159(4): 881-895. http://dx.doi.org/10.1007/s00227-011-1866-5
Pernet F., Tremblay R., Comeau L., et al. 2007. Temperature adaptation in two bivalve species from different thermal habitat: energetic and remodeling of membrane lipids. J. Exp. Biol. 210: 2999-3014. http://dx.doi.org/10.1242/jeb.006007 PMid:17704075
Perez V., Olivier F., Tremblay R., et al. 2013. Trophic resources of the bivalve, Venus verrucosa, in the Chausey archipelago (Normandy, France) determined by stable isotopes and fatty acids. Aquat. Living Resour. 26(03): 229-239. http://dx.doi.org/10.1051/alr/2013058
Pirini M., Manuzzi M.P, Pagliarani A., et al. 2007. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp. Biochem. Physiol. B. 147: 616-626. http://dx.doi.org/10.1016/j.cbpb.2007.04.003 PMid:17482494
Poppe G.T., Goto Y. 2000. European Seashells. Volume II. (Scaphopoda, Bivalvia, Cephalopoda). ConchBooks, Hackenheim, 221 pp.
Rinaldi E. 2002. Glycymeris (Glycymeris) insubrica (Brocchi, 1874) nelle acque antisanti la costa Romagnola (Mollusca, Bivalvia, Glycymerididae). Quad. Studi Nat. Romagna 16: 15-20.
Royer C., Thébault J., Chauvaud L., et al. 2013. Structural analysis and paleoenvironmental potential of dog cockle shells (Glycymeris glycymeris) in Brittany, northwest France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373: 123-132. http://dx.doi.org/10.1016/j.palaeo.2012.01.033
Savina M., Pouvreau S. 2004. A comparative ecophysiological study of two infaunal filter-feeding bivalves: Paphia rhomboides and Glycymeris glycymeris. Aquaculture 239: 289-306. http://dx.doi.org/10.1016/j.aquaculture.2004.05.029
Schöne B.R., Zhang Z., Radermacher P., et al. 2011. Sr/Ca and Mg/ Ca ratios of ontogenetically old, long-lived bivalve shells Arctica islandica) and their function as palaeotemperature proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302: 52-64. http://dx.doi.org/10.1016/j.palaeo.2010.03.016
Shin P.K.S., Yip K.M., Xu W.Z., et al. 2008. Fatty acids as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels. J. Exp. Mar. Biol. Ecol. 357: 75-84. http://dx.doi.org/10.1016/j.jembe.2008.01.002
Soudant P., van Ryckeghem K., Marty Y., et al. 1999. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific oyster Crassostrea gigas. Comp. Biochem. Physiol. B. 123: 209-222. http://dx.doi.org/10.1016/S0305-0491(99)00063-2
Trider D.J., Castell J.D. 1980. Influence of neutral lipid on seasonal variation of total lipid in oysters, Crassostrea virginica. Proc. Natl. Shellfish Ass. 70: 112-118.
Ventrella V., Pirini M., Pagliarani A., et al. 2008. Effect of temporal and geographic factors on fatty acid composition of M. galloprovincialis from the Adriatic Sea. Comp. Biochem. Physiol. B. 149: 241-250. http://dx.doi.org/10.1016/j.cbpb.2007.09.012 PMid:17977043
Zhukova N.V. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids inmollusks. Comp. Biochem. Physiol. B. 100: 801-804 . http://dx.doi.org/10.1016/0305-0491(91)90293-M
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.