Ajuste de las series temporales de δ18O y CO2 del pleistoceno final con modelos simples de cajas

Autores/as

  • Antonio García-Olivares Departament d’Oceanografia Física, Institut de Ciències del Mar, CSIC
  • Carmen Herrero Departament d’Oceanografia Física, Institut de Ciències del Mar, CSIC

DOI:

https://doi.org/10.3989/scimar.03617.19H

Palabras clave:

cambios climáticos, paleoclima, oscilaciones glaciales, modelos de caja, CO2 oceánico

Resumen


Partiendo del modelo de Paillard y Parrenin (2004) se han desarrollado varios modelos que incorporan parametrizaciones simples de la bomba oceánica de CO2. Los parámetros del modelo han sido calibrados a las series experimentales de δ18O y CO2 disponibles para los últimos 800 ka. Los resultados del modelo de Paillard pueden ser mejorados si su forzamiento insolación-CO2 es eliminado y se suponen tiempos de respuesta diferentes para la absorción y emisión de CO2 así como para la ablación y la acumulación de hielo. Las correlaciones entre las series simuladas y experimentales se incrementan entonces desde 0.59 a 0.63 (para CO2 y volumen de hielo V) hasta 0.77 y 0.88 respectivamente. Este modelo predice pulsos oceánicos de 10 a 20 ka en el comienzo de las nueve desglaciaciones. La secuencia de desglaciaciones se puede simular cualitativamente también con un modelo de “bombeo biológico” con exportación dependiente de V. La dependencia entre exportación de CO2 y V que genera el mejor ajuste no resultó ser exponencial como se esperaría, sino una función cuadrada. Los buenos ajustes obtenidos sugieren que la tasa de formación de agua profunda puede ser un factor importante que controla el pulso oceánico que dispara las desglaciaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adkins J.F., McIntyre K., Schrag D.P. 2002. The salinity, temperature and d18O of glacial deep ocean. Science 298: 1769-1773. http://dx.doi.org/10.1126/science.1076252 PMid:12459585

Archer D., Maier-Reimer E. 1994. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367: 260-263. http://dx.doi.org/10.1038/367260a0

Archer D., Eby M., Brovkin V., Ridgwell A., Cao L., Mikolajewicz U., Caldeira K., Matsumoto K., Munhoven G., Montenegro A., Tokos K. 2009. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annu. Rev. Earth Pl. Sc. 37: 117-133. http://dx.doi.org/10.1146/annurev.earth.031208.100206

Bard E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography 3: 635-645. http://dx.doi.org/10.1029/PA003i006p00635

Berger A. 1978. A simple algorithm to compute long term variations of daily or monthly insolation. Contr. 18. Inst of Astronomy and Geophysics . Université Catholique de Louvain. Louvain-la-Neuve. Belgium.

Berger A., Loutre M.F. 1991. Insolation values for the climate of the last 10 million years. Quaternary Sci. Rev. 10: 297-317. http://dx.doi.org/10.1016/0277-3791(91)90033-Q

Bjöorkström A. 1979. A Model of CO2 Interactions between Atmosphere, Oceans, and Land Biota. In: Bolin, B., Degen E.T., Kempe S., Ketner P. (eds.), The Global Carbon Cycle. Scientific Committee on Problems of the Environment (SCOPE), Chap. 15. Available at: www.icsu-scope.org/downloadpubsscope13/contents.html

Brovkin V., Bendtsen J., Claussen M., Ganopolski A., Kubatzki C., Petoukhov V., Andreev A. 2002. Carbon cycle, Vegetation and Climate Dynamics in the Holocene: Experiments with the CLIMBER-2 Model. Global Biogeochem. Cy. 16(4): 1139. http://dx.doi.org/10.1029/2001GB001662

Brovkin V., Ganopolski A., Archer D., Rahmstorf S. 2007. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22: PA4202. http://dx.doi.org/10.1029/2006PA001380

Bouttes N., Paillard D., Roche D.M. 2010. Impact of brine-induced stratification on the glacial carbon cycle. Clim. Past Discuss. 6: 681-710. http://dx.doi.org/10.5194/cpd-6-681-2010

Bouttes N., Paillard D., Roche D. M., Brovkin V., Bopp L. 2011. Last Glacial Maximum CO2 and d13C successfully reconciled. Geophys. Res. Lett. 38: L02705. http://dx.doi.org/10.1029/2010GL044499

Broecker W.S. 1982. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11: 151-197. http://dx.doi.org/10.1016/0079-6611(82)90007-6

Curry W.B., Oppo D.W. 2005. Glacial water mass geometry and the distribution of d13C of SCO2 in the western Atlantic Ocean. Paleoceanography 20: PA1017. http://dx.doi.org/10.1029/2004PA001021

Fischer H., Schmitt J., Lu.thi D., Stocker T.F., Tschumi T., Parekh P., Joos F., Köhler P., Völker C., Gersonde R., Barbante C., Le Floch M., Raynaud D., Wolff E. 2010. The role of Southern Ocean processes in orbital and millennial CO2 variations – A synthesis. Quaernary. Sci. Rev. 29: 193-205. http://dx.doi.org/10.1016/j.quascirev.2009.06.007

Gildor H., Tziperman E. 2001. Physical mechanisms behind biogeochemical glacial-interglacial CO2 variations. Geophys. Res. Lett. 28: 2421-2424. http://dx.doi.org/10.1029/2000GL012571

Huybers P. 2010. Combined obliquity and precession pacing of the late Pleistocene glacial cycles. Geophys. Res. Abstracts 12: EGU2010-15001, EGU General Assembly 2010. Available at: www.people.fas.harvard.edu/~phuybers/Doc/total_draft.pdf

Keeling R.F., Stephens B.B. 2001. Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography 16: 112-131. http://dx.doi.org/10.1029/2000PA000529

Knox F., McElroy M. 1984. Changes in atmospheric CO2: Influence of marine biota at high latitude. J. Geophys. Res. 89: 4629-4637. http://dx.doi.org/10.1029/JD089iD03p04629

Lisiecki L. E., Raymo M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20: PA1003.

Lüthi D., Le Floch M., Bereiter B., Blunier T., Barnola J.-M., Siegenthaler U., Raynaud D., Jouzel J., Fischer H., Kawamura K., Stocker T.F. 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453: 379-382. http://dx.doi.org/10.1038/nature06949 PMid:18480821

Martínez-Garcia A., Rosell-Melé A., Geibert W., Gersonde R., Masqué P., Gaspari V., Barbante C. 2009. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24: PA1207. http://dx.doi.org/10.1029/2008PA001657

Monnin E., Indermu.hle A., Dällenbach A., Flu.ckiger J., Stauffer B., Stocker T.F., Raynaud D., Barnola J.-M. 2001. Atmospheric CO2 concentrations over the last glacial termination. Science 291: 112-114. http://dx.doi.org/10.1126/science.291.5501.112 PMid:11141559

Montenegro A., Brovkin V., Eby M., Archer D., Weaver A.J. 2007. Long term fate of anthropogenic carbon. Geophys. Res. Lett. 34: L19707. http://dx.doi.org/10.1029/2007GL030905

Paillard D., Parrenin, F. 2004. The Antarctic ice sheet and the triggering of deglaciations. Earth Planet. Sci. Lett. 227: 263-271. http://dx.doi.org/10.1016/j.epsl.2004.08.023

Parrenin F., Paillard, D. 2003. Amplitude and phase of glacial cycles from a conceptual model. Earth Planet. Sci. Lett. 214: 243-250. http://dx.doi.org/10.1016/S0012-821X(03)00363-7

Pelegrí J.L. 2008. A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2. Sci. Mar. 72: 125-202.

Pepin L., Raynaud D., Barnola J. M., Loutre M.F. 2001. Hemispheric roles of climate forcings during glacial–interglacial transitions as deduced from the Vostok record and LLN-2D model experiments. J. Geophys. Res. 106: 31885-31892. http://dx.doi.org/10.1029/2001JD900117

Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429-436. http://dx.doi.org/10.1038/20859

Schmittner A. 2007. Impact of the Ocean's Overturning Circulation on Atmospheric CO2. In: Ocean Circulation: Mechanisms and Impacts, Geophysical Monograph Series 173. American Geophysical Union 10.1029/173GM20 http://dx.doi.org/10.1029/173GM20

Siddall M., Hönisch B., Waelbroeck C., Huybers P. 2009. Changes in deep Pacific temperature during the mid-Pleistocene transition and Quaternary. Quat. Sci. Rev.

Siegenthaler U., Wenk T. 1984. Rapid atmospheric CO2 variations and ocean circulation, Nature 308: 624-625. http://dx.doi.org/10.1038/308624a0

Siegenthaler U. et al. 2005. EPICA Dome C carbon dioxide concentrations from 650 to 413 kyr BP. Physikalisches Institut, Universität Bern. In Supplement to: Siegenthaler U., Stocker T. F., Monnin E., Lu.thi D., Schwander J., Stauffer B., Raynaud D., Barnola J.-M., Fischer H., Masson-Delmotte V., Jouzel J. 2005. Stable carbon cycle - Climate relationship during the Late Pleistocene. Science, 310(5752): 1313-1317. http://dx.doi.org/10.1126/science.1120130 PMid:16311332

Sigman D.M., Boyle E.A. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407: 859-869. http://dx.doi.org/10.1038/35038000 PMid:11057657

Skinner L.C. 2009. Glacial-interglacial atmospheric CO2 change: a possible "standing volume" effect on deep-ocean carbon sequestration. Climate Past 5: 537-550. http://dx.doi.org/10.5194/cp-5-537-2009

Sloyan B., Rintoul S.R. 2001. The southern limb of the global overturning circulation, J. Phys. Oceanogr. 31: 143-173. http://dx.doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2

Toggweiler J.R., Sarmiento J.L. 1985. Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water at high latitudes. In: Sundquist E., Broecker W.S. (eds.), The carbon cycle and atmospheric CO2: Natural variations Archean to present. Geophysical monograph 32, American Geophysical Union, Washington D.C. pp.163-184. http://dx.doi.org/10.1029/GM032p0163

Toggweiler J.R. 1999. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14: 571-588. http://dx.doi.org/10.1029/1999PA900033

Toggweiler J.R., Russell J.L., Carson S.R. 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21: PA2005. http://dx.doi.org/10.1029/2005PA001154

Waelbroeck C., Labeyrie L., Michel E., Duplessy J.C., McManus J.F., Lambeck K., Balbon E., Labracherie M. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Sci. Rev. 21: 295-305. http://dx.doi.org/10.1016/S0277-3791(01)00101-9

Watson A.J., Naveira Garabato A.C. 2006. The role of southern ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change, Tellus 58B: 73-87.

Wunsch C. 2003. Determining paleoceanographic circulations, with emphasis on the last glacial maximum. Quaternary Sci. Rev. 22: 371-385. http://dx.doi.org/10.1016/S0277-3791(02)00177-4

Descargas

Publicado

2012-09-30

Cómo citar

1.
García-Olivares A, Herrero C. Ajuste de las series temporales de δ18O y CO2 del pleistoceno final con modelos simples de cajas. Sci. mar. [Internet]. 30 de septiembre de 2012 [citado 23 de julio de 2024];76(S1):209-18. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1385

Número

Sección

Artículos