Photoinhibition and photosynthetic pigment reorganisation dynamics in light/darkness cycles as photoprotective mechanisms of Porphyra umbilicalis against damaging effects of UV radiation
DOI:
https://doi.org/10.3989/scimar.2008.72n187Keywords:
UV-radiation, chlorophyll fluorescence, thallus absorptance, light/dark cycles, photosynthesis, stress toleranceAbstract
Porphyra umbilicalis L. Kutzing collected from the upper intertidal zone at Helgoland, North Sea, was exposed to different spectral ranges of UV radiation under both 12/12 h light/dark cycles and continuous irradiation. In light/dark cycles, oscillations of the optimal quantum yield (Fv /Fm) were observed during the experiments, reaching maximal values at the end of the light phase followed by lower values during the dark phase. Decreased Fv /Fm was observed in thalli illuminated with photosynthetic active radiation (PAR) plus UV-A and PAR+UV-A+UV-B, compared with the PAR control, indicating a certain degree of UV-induced photoinhibition. In addition, a decrease in the percentage of change of the linear initial slope and maximum electron transport rate (ETR) estimated from ETR vs. irradiance curves was induced by UV radiation during the light phase. Recovery during the 12 h dark phase was almost completed in UV-A treated plants. PAR+UV-A seemed not to affect the photosynthesis, measured as O2 production. However, a decrease in O2 production was observed in the PAR+UV-A+UV-B treatment, but it recovered to initial values after 48 h of culture. No changes in total content of photosynthetic pigments were observed. However, thallus absorptance and the in vivo absorption cross-section in the PAR range (400-700 nm) normalised to Chl a (a* parameter) fluctuated during light/dark cycles and were positively correlated with changes in the optimum quantum yield, thus indicating that daily pigment reorganisation in the light-harvesting complex may play a key role in the photosynthetic performance of the algae. Both UV-A and UV-B treatments under continuous irradiation induced a significant reduction in the optimal quantum yield, ETR efficiency and photosynthetic oxygen production during the first 36 h to values around 30% of the initial ones. Thus, different protective mechanisms against UV stress can be observed in P. umbilicalis: dynamic photoinhibition when UVA is combined with PAR, followed by full recovery of photosynthesis during the dark phase, and a more pronounced photoinhibition under UV-B, with only partial recovery after longer time periods, in which photosynthetic pigment reorganisation plays an important role.
Downloads
References
Aguilera, J., F.L. Figueroa and F.X. Niell. – 1997. Photocontrol of short-term growth in Porphyra leucosticta (Rhodophyta). Eur. J. Phycol., 32: 417-424. doi:10.1080/09670269710001737359
Aguilera, J., U. Karsten, H. Lippert, B. Vögele, E. Philipp, D. Hanelt and C. Wiencke. –1999a. Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar. Ecol. Prog. Ser., 191: 109-119. doi:10.3354/meps191109
Aguilera, J., C. Jiménez, F.L. Figueroa, M. Lebert and D.P. Häder. – 1999b. Effect of ultraviolet radiation on thallus absorption and photosynthetic pigments in the red alga Porphyra umbilicalis. J. Photochem. Photobiol. B:Biol., 48: 75-82.
Agustí, S.S. Enríquez, H. Frost-Christensen, K. San-Jensen and C.M. Duarte. – 1994. Light harvesting among photosynthetic organisms. Fuction. Ecol., 8: 1-9.
Anderson, B., A.H. Salter, Y. Virgin, Y. Vass and S. Styring. – 1992. Photodamage to photosystem II-primary and secondary events. J. Photochem. Photobiol. B: Biol., 15: 15-21. doi:10.1016/1011-1344(92)87003-R
Aro, E.M., Y. Virgin and B. Anderson. – 1993. Photoinhibition of photosynthesis. II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta, 1143: 113-134. doi:10.1016/0005-2728(93)90134-2
Berner T., Z. Dubinsky, K. Wyman and P. Falkowski. – 1989. Photoadaptation and the “package” effect in Dunaliella tertiolecta (Chlorophyceae). J. Phycol., 25: 70-78. doi:10.1111/j.0022-3646.1989.00070.x
Caldwell M.M. – 1971. Solar UV irradiation and the growth and development of higher plants. In: A.C. Giese (ed.). Photophysiology, 6: 131-177.
Coutinho, R. and R Zingmark. – 1987. Diurnal photosynthetic responses to light by macroalgae. J. Phycol., 23: 336-343. doi:10.1111/j.1529-8817.1987.tb04142.x
Cuhel, R.L., B.P. Ortner and D.R.S. Lean. – 1984. Night Synthesis of Protein by Algae. Limnol. Oceanogr., 29: 731-744.
Demming-Adams, B. and W. Adams. – 1992. Photoprotection and other responses of plants to high light stress. Ann. Rev. Plant Physiol. Plant Mol. Biol., 43: 599-626. doi:10.1146/annurev.pp.43.060192.003123
Figueroa, F.L., S. Salles, J. Aguilera, C. Jiménez, J. Mercado, B. Viñegla, A. Flores and M. Altamirano. – 1997. Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar. Ecol. Prog. Ser., 151: 81-90. doi:10.3354/meps151081
Genty, B., J.-M. Briantais and N.R. Baker. –1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem. Biophys. Acta, 990: 87-92.
Häder, D.P. and F.L. Figueroa. –1997. Photoecophysiology of marine macroalgae. Photochem. Photobiol., 66: 1-14. doi:10.1111/j.1751-1097.1997.tb03132.x
Häder, D.-P., M. Lebert, J. Mercado, J. Aguilera, S. Salles, A. Flores-Moya, C. Jiménez and F.L. Figueroa. –1996. Photosynthetic oxygen production and PAM fluorescence in the brown alga Padina pavonica (Linnaeus) Lamouroux measured in the field under solar radiation. Mar. Biol., 127: 61-66. doi:10.1007/BF00993644
Häder, D.-P, H.D. Kumar, R.C. Smith and R. C. Worrest. –1998. Effects on aquatic ecosystems. J. Photochem. Photobiol. B: Biol., 46: 53-58. doi:10.1016/S1011-1344(98)00185-7
Häder, D.P., M. Lebert, R.P. Sinha, E.S. Barbieri and W.E. Helbling. – 2002. Role of protective and repair mechanisms in the inhibition of photosynthesis in marine macroalgae. Photochem. Photobiol. Sci. Biol., 1: 809-814. doi:10.1039/b206152j
Häder, D.P., M. Lebert and W. Helbling. – 2004. Variable fluorescence parameters in the filamentous Patagonian rhodophytes, Callithamnion gaudichaudii and Ceramium sp. under solar radiation. J. Photochem. Photobiol. B: Biol., 23: 87-99. doi:10.1016/j.jphotobiol.2003.11.001
Hanelt, D. –1998. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol., 131: 361-369. doi:10.1007/s002270050329
Hanelt, D. and W. Nultsch. – 1990. Daily changes of the phaeoplast arrangement in the brown alga Dictyota dichotoma as studied in field experiments. Mar Ecol. Prog. Ser., 61: 273-279. doi:10.3354/meps061273
Hanelt, D. and W. Nultsch. – 1995. Field studies on photoinhibition show non-correlations between oxygen and fluorescence measurements in the Arctic red alga Palmaria palmata. J. Plant Physiol., 145: 31-38.
Hanelt D., B. Melchersmann, C. Wiencke and W. Nultsch. – 1997. Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar. Ecol. Prog. Ser., 149: 255-266. doi:10.3354/meps149255
Hanelt, D., I. Hawes and R. Rae. – 2006. Reduction of UV-B radiation causes an enhancement of photoinhibition in high light stressed aquatic plants from New Zealand lakes. J. Photochem. Photobiol. B: Biol., 84: 89-102. doi:10.1016/j.jphotobiol.2006.01.013
Herbert, S.K. – 1990. Photoinhibition resistance in the red alga Porphyra perforata. The role of photoinhibition repair. Plant Physiol., 92: 514-519.
Inskeep WP and P.R. Bloom. – 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol., 77: 483-485.
Jasby, A.D. and T. Platt. –1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanog., 21: 540-545.
Korbee, N., P. Huovinen, F.L. Figueroa, J. Aguilera and U. Karsten. – 2005. Availability of ammonium influences the photosynthesis and the accumulation of MAAs in two Porphyra species (Bangiales, Rhodophyta) from different latitudes. Mar. Biol., 146: 645-654. doi:10.1007/s00227-004-1484-6
Korbee, N., F.L. Figueroa and J. Aguilera. – 2006. Acumulación de aminoácidos tipo micosporina (MAAs): biosíntesis, fotocontrol y funciones ecofisiológicas. Rev. Chil. Hist. Nat., 79: 119-132.
Krause, G.H. and E. Weis. – 1991. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant Physiol. Plant Mol. Biol., 42: 313-349. doi:10.1146/annurev.pp.42.060191.001525
Lao K. and A.N. Glazer. – 1996. Ultraviolet-B photodestruction of a light-harvesting complex. Proc. Natl. Acad. Sci., 93: 5258-5263. doi:10.1073/pnas.93.11.5258
Mata, L., J. Silva, A. Schuenhoff and R. Santos. – 2006. The effects of light and temperature on the photosynthesis of the Asparagopsis armata tetrasporophyte (Falkenbergia rufolanosa), cultivated in tanks. Aquaculture, 252: 12-19. doi:10.1016/j.aquaculture.2005.11.045
Mercado, J.M., C. Jiménez, F.X. Niell and F.L. Figueroa. – 1996. Comparison of methods for measuring light absorption by algae and their application to the estimation of the package effect. Sci. Mar., 60(Suppl. 1): 39-45.
Misonou, T., J.Saitoh, S. Oshiba, Y. Tokimoto, M. Maegawa, Y. Inoue, H. Hori and T. Sakurai. – 2002. UV-absorbing susbstance in the red alga Porphyra yezoensis (Bangiales, Rhodophyta) block Thymine photodumer production. Mar. Biotechnol., 5: 194-200. doi:10.1007/s10126-002-0065-2
Necci, O. Jr. – 2005. Light-related photosynthetic characteristics of freshwater rhodophytes. Aquat. Bot., 3: 193-209.
Nultsch, W and J. Pfau. – 1979. Occurrence and biological role of light-induced chromatophore displacement in seaweeds. Mar. Biol., 51: 77-82. doi:10.1007/BF00389033
Öquist, G., W.S. Chow and J.M. Anderson. –1992. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta, 186: 450-468.
Osmond, C.B. – 1994. What is photoinhibition? Some insights from comparisons of shade and sun plants. In: N.R. Baker and N.R. Bowyer (eds.). Photoinhibition of photosynthesis, from the molecular mechanisms to the field, pp. 1-24. BIOS Scientific Publ., Oxford.
Ramus, J. and G. Rosenberg. – 1980. Diurnal photosynthetic performance of seaweeds measured under natural conditions. Mar. Biol., 56: 21-28. doi:10.1007/BF00390590
Rijstenbil J.W., S.M. Coelho and M. Eijsackers. – 2000. A method for the assessment of light-induced oxidative stress in embryos of fucoid algae via confocal laserscan microscopy. Mar. Biol., 137: 763-774 doi:10.1007/s002270000443
Roleda, M.Y., W.H. van de Poll, D. Hanelt and C. Wiencke. – 2004. PAR and UVBR effects on photosynthesis, viability growth and DNA in different life stages of two coexisting Gigartinales: implications for recruitment and zonation pattern. Mar. Ecol. Progr. Ser. 281: 37-50. doi:10.3354/meps281037
Roleda, M.Y., W.H. van de Poll, D. Hanelt and C. Wiencke. – 2006. Growth and DNA damage in young Laminaria sporophytes exposed to ultraviolet radiation: implications for depth zonation of kelps of Helgoland (North Sea). Mar. Biol., 148: 1210-1211. doi:10.1007/s00227-005-0169-0
Ruban, A.V., J.Y. Andrew and P. Horton. –1993. Induction of nonphotochemical energy dissipation and absorbance changes in leaves. Plant Physiol., 102: 741-750.
Schreiber, U., W. Bilger and C. Neubauer. – 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: D.E. Schulze and M.M. Caldwell (eds.). Ecophysiology of Photosynthesis. Ecological Study., Vol. 100. pp. 49-70. Springer Verlag, Berlin.
Setlow, R.B. – 1974. The wavelengths of sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl. Acad. Sci. USA, 71, 3363-3366. doi:10.1073/pnas.71.9.3363
Sokal, P.R. and F.J. Rohlf. – 1995. Biometry, 3rd edn. Freeman, New York.
Van de Poll, W.H., A. Eqqert, A.G.J. Buma and A. M. Breeman. – 2001. Effects of UV-B induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: habitatrelated differences in UV-B tolerance. J. Phycol. 37: 30-37. doi:10.1046/j.1529-8817.2001.037001030.x
Van de Poll, W.H., D. Hanelt, K. Hoyer, A.G.J. Buma and A.M. Breeman. – 2002. Ultraviolet-B indiced cyclobutane-pyrimidine dimer formation and repair in arctic marine macrophytres. Photochem. Photobiol., 76: 493-500. doi:10.1562/0031-8655(2002)076<0493:UBICPD>2.0.CO;2
Zacher, K., M.Y. Roleda, D. Hanelt and C. Wiencke. – 2007. UV effects on photosynthesis and DNA in propagules of three different Antarctic seaweeds (Adenocystis utricularis, Monostroma hariotii and Porphyra endiviifolium). Planta, 225: 1505-1516. doi:10.1007/s00425-006-0436-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.