Potential biomass and distribution of octopus in the eastern part of the Campeche Bank (Yucatán, Mexico)
DOI:
https://doi.org/10.3989/scimar.05007.01AKeywords:
biomass, distribution pattern, Octopus maya, Octopus “vulgaris” Type II, Campeche Bank, Yucatán Peninsula, MexicoAbstract
The octopus fishery on the Campeche Bank (Yucatán, Mexico) is considered the third largest in the world. In Yucatán, two fleets target this resource: an artisanal fleet and a semi-industrial fleet. The artisanal fleet only catches Octopus maya, while the semi-industrial fleet catches two species, O. Maya and O. “vulgaris” Type II, because it operates at deeper waters ( > 30 m). Since there is no information on the abundance of O. “vulgaris” Type II, management is based only on O. Maya. In order to generate information about the abundance of this species, four fishing research cruises were carried out in the northeastern area of the continental shelf off the Yucatán Peninsula. Four methods (a stratified random method, a swept area, geostatistics and a weighted swept area) were applied and compared to determine the instantaneous abundance and biomass of both species in the study area. The lowest potential biomass was calculated with the geostatistical method, with values between 18.5% and 36.7% lower than the other three methods. O. “vulgaris” Type II showed the lowest biomass (37.8±3.36 t) during May and July and the highest (189.56±11.6 t) in December. Our findings revealed that the total abundance of both species was similar in the study area, with a geographic overlap whose amplitude changed throughout the year according to the geographic position: O. Maya dominated at approximately 88°W, while O. “vulgaris” Type II dominated towards the southeast at 87°W.
Downloads
References
Afkhami M.E., McIntyre P.J., Strauss S.Y. 2014. Mutualist-mediated effects on species' range limits across large geographic scales. Ecol. Lett. 17: 1265-1273. https://doi.org/10.1111/ele.12332 PMid:25052023
Amor M.D., Norman M.D., Roura A., et al. 2017. Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zool. Scr. 46: 275-288. https://doi.org/10.1111/zsc.12207
Amor M.D., Doyle S.R., Norman M.D., et al. 2019. Genome-wide sequencing uncovers cryptic diversity and mito-nuclear discordance in the Octopus vulgaris species complex. BioRxiv 573493. https://doi.org/10.1101/573493
Avendaño O., Velázquez-Abunader I., Fernández-Jardón C., et al. 2019. Biomass and distribution of the red octopus (Octopus maya) in the north-east of the Campeche Bank. J. Mar. Biol. Assoc. U.K. 99: 1317-1323. https://doi.org/10.1017/S0025315419000419
Ávila-Poveda O.H., Koueta N., Benítez-Villalobos F., et al. 2016. Reproductive traits of Octopus maya (Cephalopoda: Octopoda) with implications for fisheries management. Molluscan Res. 36: 29-44. https://doi.org/10.1080/13235818.2015.1072912
Beléndez-Moreno L.F.J., Espino-Barr E., Galindo-Cortes G., et al. 2014. Sustentabilidad y pesca responsable en México evaluación y manejo. Secretaría de Agricultura, Ganadería. Desarrollo Rural, Pesca y Alimentación (SAGARPA). Mexico.
Brassel K.E., Reif D. 1979. A procedure to generate Thiessen polygons. Geogr. Anal. 11: 289-303. https://doi.org/10.1111/j.1538-4632.1979.tb00695.x
Cochran W.G. 1978. Técnicas de muestreo (CECSA). Compañía Editorial Continental. Mexico. 513 pp.
Cornell H. 2011. Niche Overlap. In: Hastings A., Gross L.J. (eds), Encyclopedia of Theoretical Ecology. University of California Press. California, USA. pp. 489-497.
Cressie N. 1992. Statistics for spatial data. Terra Nova 4: 613-617. https://doi.org/10.1111/j.1365-3121.1992.tb00605.x
Diario Oficial de la Federación (DOF). 2016. Norma Oficial Mexicana NOM008SAG/PESC2015, para ordenar el aprovechamiento de las especies de pulpo en las aguas de jurisdicción federal del Golfo de México y Mar Caribe. April 13, 2016. SAGARPA. Ciudad de México.
Dubranna J., Pérez-Brunius P., López M., et al. 2011. Circulation over the continental shelf of the western and southwestern Gulf of Mexico. J. Geophys. Res. 116: C08009. https://doi.org/10.1029/2011JC007007
Emery T.J., Hartmann K., Gardner C. 2016. Management issues and options for small scale holobenthic octopus fisheries. Ocean Coast. Manage. 120: 180-188. https://doi.org/10.1016/j.ocecoaman.2015.12.004
Enríquez C., Mariño-Tapia I.J., Herrera-Silveira J.A. 2010. Dispersion in the Yucatan coastal zone: Implications for red tide events. Cont. Shelf Res. 30: 127-137. https://doi.org/10.1016/j.csr.2009.10.005
Galindo-Cortes G., Hernández-Flores Á., Santos-Valencia J. 2014. Pulpo del Golfo de México Octopus maya y Octopus vulgaris. In: Beléndez-Moreno L.F.J., Espino-Barr E., et al. (eds). Sustentabilidad y Pesca Responsable en México, Evaluación y Manejo. INAPESCA. pp.177-207.
Gamboa-Álvarez M.Á., López-Rocha J.A., Poot-López G.R. 2015. Spatial analysis of the abundance and catchability of the red octopus Octopus maya (Voss and Solis-Ramírez, 1966) on the continental shelf of the Yucatán peninsula, México. J. Shellfish Res. 34: 481-492. https://doi.org/10.2983/035.034.0232
Guerra A. 1981. Spatial distribution pattern of Octopus vulgaris Cuvier. J. Zool. Lond. 195: 133-146. https://doi.org/10.1111/j.1469-7998.1981.tb01897.x
Hernández-Flores A., Condal A., Poot-Salazar A., et al. 2015. Geostatistical analysis and spatial modeling of population density for the sea cucumbers Isostichopus badionotus and Holothuria floridana on the Yucatan Peninsula, Mexico. Fish. Res. 172: 114-124. https://doi.org/10.1016/j.fishres.2015.07.005
Hilborn R., Walters C. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman-Hall, New York, 570 pp. https://doi.org/10.1007/978-1-4615-3598-0 PMid:9908045
Jurado-Molina J. 2010. A Bayesian framework with implementation error to improve the management of the red octopus (Octopus maya) fishery off the Yucatán Peninsula. Cienc. Mar. 36: 1-14. https://doi.org/10.7773/cm.v36i1.1627
Lee T.N., Williams E. 1999. Mean distribution and seasonal variability of coastal currents and temperature in the Florida Keys with implications on larval recruitment. Bull. Mar. Sci. 64: 35-56.
Leite T.S., Haimovici M., Mather J., et al. 2009. Habitat, distribution, and abundance of the commercial octopus (Octopus insularis) in a tropical oceanic island, Brazil: Information for management of an artisanal fishery inside a marine protected area. Fish. Res. 98: 85-91. https://doi.org/10.1016/j.fishres.2009.04.001
Leporati S.C., Hart A.M., Larsen R., et al. 2015. Octopus life history relative to age, in a multi-geared developmental fishery. Fish. Res. 165: 28-41. https://doi.org/10.1016/j.fishres.2014.12.017
Lima F.D., Berbel-Filho W.M., Leite T.S., et al. 2017. Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidentification to octopus fisheries management. Mar. Biodivers. 47: 723-734. https://doi.org/10.1007/s12526-017-0638-y
López-Rocha J.A., Arreguín-Sánchez F. 2013. Spatial dynamics of the red grouper Epinephelus morio (Pisces: Serranidae) on the Campeche Bank, Gulf of Mexico. Sci. Mar. 77: 313-322. https://doi.org/10.3989/scimar.03565.13B
Morey S.L., Zavala-Hidalgo J., O'Brien J.J. 2006. The seasonal variability of continental shelf circulation in the northern and western Gulf of Mexico from a high-resolution numerical model. In: Sturges W., Lugo-Fernandez A., (eds). Circulation in the Gulf of Mexico. Observations and models. Geophysical Monograph Series. Washington, DC. USA. 203-218. https://doi.org/10.1029/161GM16
Nevárez-Martínez M.O., Hernández-Herrera A., Morales-Bojórquez E., et al. 2000. Biomass and distribution of the jumbo squid (Dosidicus gigas; d'Orbigny, 1835) in the Gulf of California, Mexico. Fish. Res. 49: 129-140. https://doi.org/10.1016/S0165-7836(00)00198-3
Norman M.D., Finn J.K., Hochberg F.G. 2014. Family Octopodidae. In: Jereb P., Roper C.F.E., et al. (eds), Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 3. Octopods and vampire squids. FAO Species Catalogue for Fishery Puroises. No. 4, Vol. 3, FAO, Rome. pp. 36-215.
Oosthuizen A., Smale M.J. 2003. Population biology of Octopus vulgaris on the temperate south-eastern coast of South Africa. J. Mar. Biol. Assoc. U.K. 83: 535-541. https://doi.org/10.1017/S0025315403007458h
Paris C.B., Cowen R.K., Claro R., et al. 2005. Larval transport pathways from Cuban spawning aggregations (Snappers; Lutjanidae) based on biophysical modeling. Mar. Ecol. Prog. Ser. 296: 93-106. https://doi.org/10.3354/meps296093
Pauly D. 1984. Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM Stud. Rev. 8. 325 pp.
Pecl G.T., Jackson G.D. 2008. The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev. Fish Biol. Fish. 18: 373-385. https://doi.org/10.1007/s11160-007-9077-3
Pierce G.J., Guerra A. 1994. Stock assessment methods used for cephalopod fisheries. Fish Res. 21: 255-285. https://doi.org/10.1016/0165-7836(94)90108-2
Pierce G.J., Valavanis V.D., Guerra A., et al. 2008. A review of cephalopod-environment interactions in European Seas and other world areas. Hydrobiologia 612: 49-70. https://doi.org/10.1007/s10750-008-9489-7
Ritschard E.A., Guerrero-Kommritz J., Sanchez J.A. 2019. First molecular approach to the octopus fauna from the southern Caribbean. PeerJ 7: e7300. https://doi.org/10.7717/peerj.7300 PMid:31392090 PMCid:PMC6673601
Rivoirard J., Simmonds J., Foote K.G., et al. 2008. Geostatistics for Estimating Fish Abundance. Blackwell Science, London. 206 pp.
Rodhouse P.G.K., Pierce G.J., Nichols O.C., et al. 2014. Environmental effects on cephalopod population dynamics: implications for management of fisheries. In: Vidal E.A.G (eds), Advances in Cephalopod Sciences: Biology, Ecology, Cultivation and Fisheries, Adv. Mar. Biol. 67: 99-233. https://doi.org/10.1016/B978-0-12-800287-2.00002-0 PMid:24880795
Rosenberg A., Kirkwood G., Crombie J., et al. 1990. The assessment of stocks of annual squid species. Fish. Res. 8: 335-350. https://doi.org/10.1016/0165-7836(90)90003-E
Salas S., Cabrera M., Palomo L., et al. 2008. Plan de manejo y operación del comité de administración pesquera de escama y pulpo. Informe Final. Cinvestav IPN. Merida, Mexico.
Salas S., Torres-Irineo E., Coronado E. 2019. Towards a métier-based assessment and management approach for mixed fisheries in Southeastern Mexico. Mar. Policy 103: 148-159. https://doi.org/10.1016/j.marpol.2019.02.040
Sauer W.H., Gleadall I.G., Downey-Breedt N., et al. 2020. World Octopus Fisheries. Rev. Fish. Sci. Aquac.
Sawatzky D., Raines G., Bonham-Carter G., et al. 2009. Spatial Data Modeller (SDM): ArcMAP 9.2 geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks. http://arcscripts.esri.com/details.asp?dbid=15341
Schoener T.W. 1968. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49: 704-726. https://doi.org/10.2307/1935534
Solís-Ramírez M.J. 1994. La pesquería del pulpo del Golfo de México y Caribe Mexicano. In: Atlas Pesquero y Pesquerías Relevantes de México. CD Multimedia. Secretaria de Pesca, INP. CENEDIC. Universidad de Colima, Mexico.
Solís-Ramírez M., Chávez E. 1986. Evaluación y régimen óptimo de pesca del pulpo. de la península de Yucatán. An. Itto. Cienc. Mar Limnol.UNAM 13: 1-18.
Tester P.A., Stumpf R.P., Vukovich F.M., et al. 1991. An expatriate red tide bloom: transport, distribution, and persistence. Limnol. Oceanogr. 36: 1053-1061. https://doi.org/10.4319/lo.1991.36.5.1053
Van Nieuwenhove A.H.M., Ratsimbazafy H.A., Kochzius M. 2019. Cryptic diversity and limited connectivity in octopuses: Recommendations for fisheries management. PloS ONE 14: e0214748. https://doi.org/10.1371/journal.pone.0214748 PMid:31083669 PMCid:PMC6513052
Velázquez-Abunader I., Salas S., Cabrera M.A. 2013. Differential catchability by zone, fleet, and size: the case of the red octopus (Octopus maya) and common octopus (Octopus vulgaris) fishery in Yucatan, Mexico. J. Shellfish Res. 32: 845-854. https://doi.org/10.2983/035.032.0328
Webster R., Oliver M.A. 2007. Geostatistics for environmental scientists. JWS. Chichester. England. https://doi.org/10.1002/9780470517277
Zar J.H. 1999. Biostatistical analysis. Prentice Hall. Upper Saddle River, New Jersey. USA.
Zavala-Hidalgo J., Parés-Sierra A., Ochoa J. 2002. Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico. Atmósfera 15: 81-104.
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.