Modelling the spatial population structure and distribution of the queen conch, Aliger gigas, on the Pedro Bank, Jamaica

Authors

DOI:

https://doi.org/10.3989/scimar.05269.040

Keywords:

spatial analysis, sedentary species, zero-inflation, species distribution models

Abstract


The estimation of reliable indices of abundance for sedentary stocks requires the incorporation of the underlying spatial population structure, including issues arising from the sampling design and zero inflation. We applied seven spatial interpolation techniques [ordinary kriging (OK), kriging with external drift (KED), a negative binomial generalized additive model (NBGAM), NBGAM plus OK (NBGAM+OK), a general additive mixed model (GAMM), GAMM plus OK (GAMM+OK) and a zero-inflated negative binomial model (ZINB) ] to three survey datasets to estimate biomass for the gastropod Aliger gigas on the Pedro Bank Jamaica. The models were evaluated using 10-fold cross-validation diagnostics criteria for choosing the best model. We also compared the best model estimations against two common design methods to assess the consequences of ignoring the spatial structure of the species distribution. GAMM and ZINB were overall the best models but were strongly affected by the sampling design, sample size, the coefficient of variation of the sample and the quality of the available covariates used to model the distribution (geographic location, depth and habitat). More reliable abundance indices can help to improve stock assessments and the development of spatial management using an ecosystem approach.

Downloads

Download data is not yet available.

References

Anderson L., Seijo J. 2010. Bioeconomics of Fisheries Management. Ames: Wiley-Blackwell. Oxford, UK. 305 pp.

Appeldoorn R. 1988. Age determination, growth, mortality and age of the first reproduction in adult queen conch, Strombus gigas L., off Puerto Rico. Fish. Res. 6: 363-378. https://doi.org/10.1016/0165-7836(88)90005-7

Appeldoorn R., Rodriguez B. 1994. Queen conch, Strombus gigas, biology, fisheries and mariculture. Latinamerican Malacological Congress. Fundacion Cientifica Los Roques, Caracas, 356 pp.

Aspra B., Barnutty R., Mateo J., et al. 2009. Conversion factors for processed queen conch to nominal weight. FAO Fisheries and Aquaculture Circular No. 1042, Rome, 97 pp.

Arab A., Wildhaber M., Wikle C., Gent C. 2008. Zero-inflated modeling of fish catch per unit area resulting from multiple gears: Application to channel catfish and shovelnose sturgeon in the Missouri River. North. Am. J. Fish. Manage. 28: 1044-1058. https://doi.org/10.1577/M06-250.1

Baker N., Appeldoorn R., Torres-Saavedra P. 2016. Fishery-independent surveys of the queen conch stock in Western Puerto Rico, with an assessment of historical trends and management effectiveness. Mar. Coast. Fish. 8: 567-579. https://doi.org/10.1080/19425120.2016.1223232

Baldwin K. 2015. Marine spatial planning for the Pedro Bank, Jamaica. Final Report. For the Nature Conservancy and NEPA, Government of Jamaica.

Chang J., Shank B., Hart D. 2017. A comparison of methods to estimate abundance and biomass from belt transect surveys: Population estimation from belt transect surveys. Limnol. Oceanogr. 15: 480-494. https://doi.org/10.1002/lom3.10174

Drexler M., Ainsworth C. 2013. Generalized Additive Models Used to Predict Species Abundance in the Gulf of Mexico: An Ecosystem Modeling Tool. PLoS ONE, 8: 5. https://doi.org/10.1371/journal.pone.0064458 PMid:23691223 PMCid:PMC3653855

Ehrhardt N., Valle-Esquivel M. 2008. Conch (Strombus gigas) stock assessment manual. San Juan (PR): Caribbean Fisheries Management Council. 128 pp.

Garcia S., Zerbi A., Aliaume C., et al. 2003. The ecosystem approach to fisheries. Issues, terminology, principles, institutional foundations, implementation and outlook. FAO Fisheries Technical Paper No. 443, Rome, 71 pp.

Gridded Global Bathymetry Data (GEBCO). 2020. British Oceanographic Data Centre, Liverpool, United Kingdom.

Gutierrez N., Martinez, A. Defeo, O. 2008. Identifying environmental constraints at the edge of a species' range: Scallop Psychrochlamys patagonica in the SW Atlantic Ocean. Mar. Ecol. Prog. Ser. 353: 147-156. https://doi.org/10.3354/meps07184

Hall D. 2000. Zero-inflated Poisson binomial regression with random effects: a case study. Biometrics, 56: 1030-1039. https://doi.org/10.1111/j.0006-341X.2000.01030.x PMid:11129458

Hastie T., Tibshirani R. 1990. Generalized Additive Models. Chapman and Hall, Washington D.C., 352 pp.

Hengl T., Heuvelink G., Rossiter D. 2007. About regression-kriging: From equations to case studies. Comput. Geosci. 33: 1301-1315. https://doi.org/10.1016/j.cageo.2007.05.001

Isaaks E., Srivastava, R. 1989. An intorduction to applied geostatistics. Oxford University Press, New York, 592 pp.

Kitson-Walters K., Candy A., Truelove N., Roye M., Webber M., Aiken K., Box, S. 2018. Fine-scale population structure of Lobatus gigas in Jamaica's exclusive economic zone considering hydrodynamic influences. Fish. Res. 199: 53-62. https://doi.org/10.1016/j.fishres.2017.11.010

Krige D. 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, J. South. Afr. Inst. Min. Metall. 52: 119-139.

Lambert D. 1992. Zero-inflated Poisson regression with an application to defects in manufacturing. Technometrics 34: 1-14. https://doi.org/10.2307/1269547

Li J., Heap A. 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 6: 228-241. https://doi.org/10.1016/j.ecoinf.2010.12.003

Lyashevska O., Brus D., van der Meer L. 2016. Mapping species abundance by a spatial zero-inflated Poisson model: a case study in the Wadden Sea, the Netherlands. Ecol. Evol. 6: 532-543. https://doi.org/10.1002/ece3.1880 PMid:26843936 PMCid:PMC4729254

Martin T., Wintle B., Rhodes J., et al. 2005. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8: 1235-1246. https://doi.org/10.1111/j.1461-0248.2005.00826.x PMid:21352447

Matheron G. 1963. Principles of geostatistics. Econ. Geol. 58: 1246-1266. https://doi.org/10.2113/gsecongeo.58.8.1246

Morris R. 2016. Distribution of Queen conch (Strombus gigas) on the Pedro Bank, Jamaica: descriptive and predictive distribution models. MS thesis, University of Iceland, 67 pp.

Pebesma E. 2004. Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30: 683-691. https://doi.org/10.1016/j.cageo.2004.03.012

Pinheiro J., Bates D., DebRoy S., et al. 2021. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-153, 3.1-153.

Potts J., Elith J. 2006. Comparing species abundance models. Ecol. Model. 199: 153-163. https://doi.org/10.1016/j.ecolmodel.2006.05.025

Potts S., Rose K. 2018. Evaluation of GLM and GAM for estimating population indices from fishery independent surveys. Fish. Res. 208: 167-178. https://doi.org/10.1016/j.fishres.2018.07.016

Prada M., Appeldoorn R., Van Eijs S., Pérez M. 2017. Conch Fisheries Management and Conservation Plan. FAO Fisheries and Aquaculture Tehcniacal Paper T610, Rome, 72 pp.

R Core Team. 2021. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/

Rivoirard J., Simmonds J., Foote K., Fernandes P., Bez N. 2000. Geostatistics for Estimating Fish Abundance. Blackwell Science Ltd., Oxford, 216 pp. https://doi.org/10.1002/9780470757123

Rufino M., Albouy C., Brind'Amour A. 2021. Which spatial interpolators I should use? A case study applying to marine species. Ecol. Model. 449: 109501. https://doi.org/10.1016/j.ecolmodel.2021.109501

Segurado P., Araujo M., Kunin W. 2006. Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol. 43: 433-444. https://doi.org/10.1111/j.1365-2664.2006.01162.x

Stoner A, Appeldoorn R. 2021. Synthesis of Research on the Reproductive Biology of Queen Conch (Aliger gigas): Toward the Goals of Sustainable Fisheries and Species Conservation. Rev. Fish. Sci. Aquac. 1-45. https://doi.org/10.1080/23308249.2021.1968789

Stoner A, Ray-Culp M. 2000. Evidence for Allee effects in an over-harvested marine gastropod: density-dependent mating and egg production. Mar. Ecol. Prog. Ser. 202: 297-302. https://doi.org/10.3354/meps202297

Stoner A, Davis M., Kough A. 2018. Relationships between fishing pressure and stock structure in queen conch (Lobatus gigas) populations: synthesis of long-term surveys and evidence for overfishing in The Bahamas. Rev. Fish. Sci. Aquac. 26: 51-71. https://doi.org/10.1080/23308249.2018.1480008

Surette T., Marcotte D., Wade E. 2007. Predicting snow crab (Chionoecetes opilio) abundance using kriging with external drift with depth as a covariate. Can Tech Rep Fish Aquat Sci. 2763: 1488-5379.

Webster R., Oliver M. 2007. Geostatistics for Environmental Scientists, 2nd Edn. John Wiley and Sons, Ltd. Chichester, 336 pp. https://doi.org/10.1002/9780470517277

Willmott C. 1982. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 63: 1309-1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2

Wood S. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Series. B. Stat. Methodol. 73: 3-36. https://doi.org/10.1111/j.1467-9868.2010.00749.x

Yu H., Jiao Y., Carstensen L. 2013. Performance comparison between spatial interpolation and GLM/GAM in estimating relative abundance indices through a simulation study. Fish. Res. 147: 186-195. https://doi.org/10.1016/j.fishres.2013.06.002

Zeileis A., Kleiber C., Jackman S. 2008. Regression Models for Count Data in R. J. Stat. Softw. 27: 1-25. https://doi.org/10.1007/978-0-387-77318-6_4

Zuur A., Ieno E., Walker N., Saveliev A., Smith, G. 2009. Mixed Effects Models and Extensions in Ecology With R. Springer Science+Business Media LLC., New York, 574 pp. https://doi.org/10.1007/978-0-387-87458-6

Published

2022-09-21

How to Cite

1.
Morris RA, Hernández-Flores A, Cuevas-Jimenez A. Modelling the spatial population structure and distribution of the queen conch, Aliger gigas, on the Pedro Bank, Jamaica. scimar [Internet]. 2022Sep.21 [cited 2022Dec.1];86(3):e040. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1929

Issue

Section

Articles

Most read articles by the same author(s)