Larval development and shape variation of the kelpfish Myxodes viridis (Teleostei: Clinidae)

Authors

  • Francisca Zavala-Muñoz Laboratorio de Ictioplancton (LABITI), Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso
  • Mauricio F. Landaeta Laboratorio de Ictioplancton (LABITI), Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso
  • Valentina Bernal-Durán Laboratorio de Ictioplancton (LABITI), Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso
  • Guillermo A. Herrera Facultad de Ciencias, Universidad Católica de la Santísima Concepción
  • Donald I. Brown Unidad de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso

DOI:

https://doi.org/10.3989/scimar.04263.24C

Keywords:

Myxodes viridis, Clinidae family, early ontogenetic development, ichthyoplankton, geometric morphometrics, classic morphometrics, osteology

Abstract


Larval development and shape ontogeny of the kelpfish Myxodes viridis (Clinidae) are described for the first time. A total of 214 individuals ranging between 3.51 and 23.09 mm standard length collected off central Chile were assessed employing classic and geometric morphometrics, illustration with camera lucida and a double-staining technique for cartilaginous and bone structure observation. Based on characteristics such as yolk sac presence and fin formation, six stages of larval development were differentiated: yolk sac, preflexion, flexion, early postflexion, late postflexion and juvenile. Shape changes during development are subtle and occur smoothly, being more significant in the head and preanal length, and ontogenetic allometry accounts for almost 15%. Cartilage formation takes place first at the branchial arches and cranium; then hypural, haemal and neural arches are consecutively formed. Bony structure ossification occurs late in the development. Vertebral centra ossify directly, without cartilaginous matrix replacement.

Downloads

Download data is not yet available.

References

Ahlstrom E.H., Ball O.P. 1954. Description of eggs and larvae of jack mackerel (Trachurus symmetricus) and distribution and abundance of larvae in 1950 and 1951. Fish. Bull. U.S. 52: 209-245.

Ahlstrom E.H., Moser H.G., O'Toole M.J. 1976. Development and distribution of larvae and early juveniles of the commercial lanternfish, Lampanyctodes hectoris (Günther) off the west coast of southern Africa with a discussion of phylogenetic relationships of the genus. Bull. South. Cal. Acad. Sci. 75: 138-152.

Balbontín F., Pérez R. 1979. Modalidad de postura, huevos y estados larvales de Hypsoblennius sordidus (Bennett) en la Bahía de Valparaíso (Blenniidae: Perciformes). Rev. Biol. Mar. 16: 311-318.

Betancur-R.R., Broughton R.E., Wiley E.O., et al. 2013. The Tree of Life and a new classification of bony fishes. PLoS Curr. 18: 5. http://dx.doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288

Bookstein F. 1991. Morphometric tools for landmark data. Geometry and Biology. Cambridge Univ. Press, 455 p.

Brogan M. 1992. Ecology of larval fishes around reefs in the Gulf of California, México. PhD. thesis, Univ. Arizona, 161 p.

Castillo R.M., Peque-o G. 1998. Sinopsis de Tripterygiidae de Chile (Osteichthyes: Perciformes). Gayana Zool. 62: 109-133.

Ciechomski J. 1975. Características y distribución de post-larvas del acorazado Agonopsis chiloensis (Jenyns, 1842) Jordan y Evermann, 1898, y de Tripterygion cunninghami Smitt, 1898 en aguas del Atlántico frente a la Argentina (Pisces). Physis A 84: 309-317.

Fisher R., Leis J.M., Clark D.L., et al. 2005. Critical swimming speeds of late-stage coral reef fish larvae: variation within species, among species and between locations. Mar. Biol. 147: 1201-1212. http://dx.doi.org/10.1007/s00227-005-0001-x

Frédérich B., Adriaens D., Vandewalle P. 2008. Ontogenetic shape changes in Pomacentridae (Teleostei, Perciformes) and their relationships with feeding strategies: a geometric morphometric approach. Biol. J. Linn. Soc. 95: 92-105. http://dx.doi.org/10.1111/j.1095-8312.2008.01003.x

Frédérich B., Colleye O., Lepoint G., et al. 2012. Mismatch between shape changes and ecological shifts during the post-settlement growth of the surgeonfish, Acanthurus triostegus. Front. Zool. 9: 8. http://dx.doi.org/10.1186/1742-9994-9-8 PMid:22533865 PMCid:PMC3495409

Fuiman L. 1983. Growth gradients in fish larvae. J. Fish Biol. 23: 117-123. http://dx.doi.org/10.1111/j.1095-8649.1983.tb02886.x

George A., Springer V. 1980. Revision of the clinid fish tribe Ophiclinini, including five new species, and definition the family Clinidae. Smithson. Contrib. Zool. 307: 1-30. http://dx.doi.org/10.5479/si.00810282.307

Gillis G., Randall D., Shubin N. 2009. Chondrogenesis and homology of the visceral skeleton in the little skate, Leucoraja erinacea (Chondrichthyes: Batoidea). J. Morph. 270: 628-643. http://dx.doi.org/10.1002/jmor.10710 PMid:19117064

Hastings P., Springer V. 2009. Systematics of the Blennioidei and the included families Chaenopsidae, Clinidae, Labrisomidae and Dactyloscopidae. In: Patzner R., Goncalves E., Hastings P., et al. (eds), The Biology of Blennies. Enfield, NH. Science Publishers, pp. 3-30. http://dx.doi.org/10.1201/b10301-3

Herrera G. 1984. Descripción de estados post-embrionales de Ophiogobius jenynsi Hoese 1976 (Gobiidae, Blenniioidei). Rev. Biol. Mar. 20: 159-168.

Herrera G.A., Lavenberg R.J. 1999. Larval Labrisomidae (Pisces: Blennioidei) from the Galápagos Islands. Contrib. Sci. 48: 1-14.

Herrera G.A., Lavenberg R.J. 2002. Larval blennies from the Galapagos and Cocos Islands: families Tripterygiidae, Dactyloscopidae, and Chaenopsidae (Perciformes, Blennioidei). Contrib. Sci. 488: 1-15.

Herrera G., Llanos-Rivera A., Landaeta M.F. 2007. Larvae of the sand stargazer Sindoscopus australis and notes on the development of Dactyloscopidae (Percifomes: Blennioidei). Zootaxa 1401: 63-68.

Huxley J.S. 1932. Problems of Relative Growth. London: Methuen and Co. 312 p. PMCid:PMC2985095

Klingenberg C. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11: 353-357. http://dx.doi.org/10.1111/j.1755-0998.2010.02924.x PMid:21429143

Klingenberg C. 2013. Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix 24: 15-24.

Klingenberg C., Monteiro L. 2005. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst. Biol. 54: 678-688. http://dx.doi.org/10.1080/10635150590947258 PMid:16126663

Klingenberg C., Marugán-Lobón J. 2013. Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62: 591-610. http://dx.doi.org/10.1093/sysbio/syt025 PMid:23589497

Koumoundouros G., Divanach P., Kentouri M. 2001. Osteological development of Dentex dentex (Osteichthyes, Sparidae): dorsal, anal, paired fins and squamation. Mar. Biol. 138: 399-406. http://dx.doi.org/10.1007/s002270000460

Kouttouki S., Georgakopoulou E., Kaspiris P., et al. 2006. Shape ontogeny and variation in the sharpsnout seabream, Diplodus puntazzo (Cetti 1777). Aqua. Res. 37: 655-663. http://dx.doi.org/10.1111/j.1365-2109.2006.01475.x

Lin H. 2009. Evolution of the suborder Blennioidei: phylogeny and phylogeography of a shallow water fish clade. Ph.D. thesis, Univ. California, San Diego, 150 pp.

Lleonart J., Salat J., Torres G.J. 2000. Removing allometric effects of body size in morphometrical analysis. J. Theor. Biol. 205: 85-93. http://dx.doi.org/10.1006/jtbi.2000.2043 PMid:10860702

Loy A., Mariani L., Bertelletti M., et al. 1998. Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages of the two-banded sea bream, Diplodus vulgaris (Perciformes, Sparidae). J. Morphol. 237: 137-146. http://dx.doi.org/10.1002/(SICI)1097-4687(199808)237:2<137::AID-JMOR5>3.0.CO;2-Z

Mansur L., Plaza G., Landaeta M., et al. 2014. Planktonic duration in fourteen species of intertidal rocky fishes from the south-eastern Pacific Ocean. Mar. Freshw. Res. 65: 901-909. http://dx.doi.org/10.1071/MF13064

Martínez P., Berbel-Filho W., Jacobina U. 2013. Is formalin fixation and ethanol preservation able to influence in geometric morphometric analysis? Fishes as a case of study. Zoomorphology 132: 87-93. http://dx.doi.org/10.1007/s00435-012-0176-x

Menegola E., Broccia M., Giavini E. 2001. Atlas of rat fetal skeleton double stained for bone and cartilage. Teratology 64: 125-133. http://dx.doi.org/10.1002/tera.1055 PMid:11514942

Mitteroecker P., Gunz P., Bernhard M., et al. 2004. Comparison of cranial ontogenetic trajectories among great apes and humans. J. Hum. Evol. 46: 679-698. http://dx.doi.org/10.1016/j.jhevol.2004.03.006 PMid:15183670

Moser H. 1996. Introduction. In: Moser H (ed.), The early stages of fishes in the California Current region, pp. 1-72. Kansas City, KS: Allen Press.

Neira F., Miskiewicz A., Trnski T. 1998. Larvae of Temperate Australian Fishes. Laboratory guide for larval fish identification. Univ. Western Australia Press, Nedlands, 474 pp.

Nikolakakis S., Bossier P., Kanlis G., et al. 2014. Protocol for quantitative shape analysis of deformities in early larval European seabass Dicentrarchus labrax. J. Fish. Biol. 84: 206-224. http://dx.doi.org/10.1111/jfb.12284 PMid:24383805

Ochoa-Mu-oz M., Valenzuela C., Toledo S., et al. 2013. Feeding of a larval clinid fish in a microtidal estuary from southern Chile. Rev. Biol. Mar. Oceanogr. 48: 45-57. http://dx.doi.org/10.4067/S0718-19572013000100005

Okiyama M. 1988. An atlas of the early stage fishes in Japan. Tokai Univ. Press, Tokio. 1154 pp.

Ott A., Löffler J., Ahnelt H., et al. 2009. Early development of the postcranial skeleton of the Pikeperch Sander lucioperca (Teleostei: Percidae) relating to developmental stages and growth. J. Morph. 273: 894-908 http://dx.doi.org/10.1002/jmor.20029 PMid:22505228

Peque-o G., Lamilla J., Lloris D., et al. 1995. Comparación entre las ictiofaunas intermareales de los extremos austral y boreal de los canales patagónicos. Rev. Biol. Mar. 30(2): 155-177.

Pérez R. 1979. Desarrollo postembrionario de Tripterygion chilensis Cancino 1955, en la Bahía de Valparaíso (Tripterygiidae: Perciformes). Rev. Biol. Mar. 16: 319-329.

Plaza G., Landaeta M., Espinoza C., et al. 2013. Daily growth patterns of six species of young-of-the-year of Chilean intertidal fishes. J. Mar. Biol. Ass. UK 93: 389-395. http://dx.doi.org/10.1017/S0025315412000859

Rohlf F. 2006. TpsDig Ver. 2.10, Digitalized Landmarks and Outlines. Department of Ecology and Evolution, State Univ. New York: Stony Book.

Russo T., Costa C., Cataudella S. 2007. Correspondence between shape and feeding habit changes throughout ontogeny of gilthead sea bream Sparus aurata L., 1758. J. Fish. Biol. 71: 629-656. http://dx.doi.org/10.1111/j.1095-8649.2007.01528.x

Russo T., Pulcini D., Bruner E., et al. 2009. Shape and size variation: growth and development of the dusky grouper (Epinephelus marginatus Lowe, 1834). J. Morph. 270: 83-96. http://dx.doi.org/10.1002/jmor.10674 PMid:18798248

Sagnes P. 1997. Potential artefacts in morphometric analyses of fish: effects of formalin preservation on 0+ grayling. J. Fish. Biol. 50: 910-914. http://dx.doi.org/10.1111/j.1095-8649.1997.tb01986.x

Sidlaukas B.L., Mol J.H., Vari R.P. 2011. Dealing with allometry in linear and geometric morphometrics: a taxonomic case study in the Leporinus cylindriformis group (Characiformes: Anostomidae) with description of a new species from Suriname. Zool. J. Linn. Soc. 162: 103-130. http://dx.doi.org/10.1111/j.1096-3642.2010.00677.x

Stephens J., Springer V. 1973. Clinid fishes of Chile and Peru, with description of a new species, Myxodes ornatus from Chile. Smithson. Contrib. Zool. 159: 1-24. http://dx.doi.org/10.5479/si.00810282.159

Stepien C. 1986. Life history and larval development of the giant kelpfish, Heterostichus rostratus Girard, 1854. Fish. Bull. 84(4): 809-826.

Stepien C. 1990. Population structure, diets and biogeographic relationships of a rocky intertidal fish assemblage in central Chile: high levels of herbivory in a temperate system. Bull. Mar. Sci. 47: 598-612.

Stepien C. 1992. Evolution and biogeography of the Clinidae (Teleostei: Blennioidei). Copeia 1992(2): 375-392. http://dx.doi.org/10.2307/1446198

Stepien C., Dillon A., Brooks M., et al. 1997. The Evolution of Blennioid Fishes Based on an Analysis of Mitochondrial 12S rDNA In: Kocher T., Stepien C. (ed.) Molecular Systematics of Fishes, Academic Press, London, pp. 245-270. http://dx.doi.org/10.1016/B978-012417540-2/50016-6

Tucker J., Chester A.J. 1984. Effects of salinity, formalin concentration and buffer on quality of preservation of southern flounder (Paralichthys lethostigma) larvae. Copeia 1984: 981-988. http://dx.doi.org/10.2307/1445343

Watson W. 1996. Clinidae. In: Moser H (ed.) The Early Stages of Fishes in the California Current Region. Atlas N°33. California Cooperative Oceanic Fisheries Investigations, Allen Press Inc., Kansas, USA, pp. 1164-1169.

Zeldrich M., Swiderki D., Sheets H., et al. 2004. Geometric Morphometrics for Biologists: A Primer. San Diego, CA, Academic Press.

Published

2016-03-30

How to Cite

1.
Zavala-Muñoz F, Landaeta MF, Bernal-Durán V, Herrera GA, Brown DI. Larval development and shape variation of the kelpfish Myxodes viridis (Teleostei: Clinidae). Sci. mar. [Internet]. 2016Mar.30 [cited 2024Apr.19];80(1):39-4. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1613

Issue

Section

Articles