Presettlement schooling behaviour of a rocky fish in a shallow area. Is it related to local environmental conditions?
DOI:
https://doi.org/10.3989/scimar.05043.19AKeywords:
shoaling, reef fish, settlement, seawater temperature, local winds, turbulenceAbstract
This study evaluates the swimming behaviour of pre-settled fish larvae of the triplefin Helcogrammoides chilensis (Tripterygiidae) in relation to local environmental conditions. Larval aggregations were recorded on rocky reefs off central Chile during the austral summer of 2014 and 2016 to describe their swimming behaviour (i.e. solitary, shoaling, schooling) and relate it to in situ water temperature, wind stress, wind speed and turbulence. Shoaling and solitary behaviour were influenced only by wind-induced turbulence in 2014 and by seawater temperature and wind stress in 2016. Schooling behaviour was not influenced by any of the environmental variables. In situ swimming behaviour of fish larvae has been little investigated, and this work proposes a non-invasive in situ methodology for studying fish larval behaviour.
Downloads
References
Aiken C.M., Navarrete S.A., Castillo M.I., et al. 2007. Along-shore larval dispersal kernels in a numerical ocean model of the central Chilean coast. Mar. Ecol. Prog. Ser. 339: 13-24. https://doi.org/10.3354/meps339013
Aiken C.M., Castillo M.I., Navarrete S.A. 2008. A simulation of the Chilean coastal current and associated topographic upwelling near Valparaíso, Chile. Cont. Shelf Res. 28: 2371-2381. https://doi.org/10.1016/j.csr.2008.05.006
Aravena G., Broitman B., Stenseth N.C. 2014. Twelve years of change in coastal upwelling along the central-northern coast of Chile: spatially heterogeneous responses to climatic variability. PLoS ONE 9: e90276. https://doi.org/10.1371/journal.pone.0090276 PMid:24587310 PMCid:PMC3938675
Brandl S.J., Tornabene L., Goatley C.H.R., et al. 2019. Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364: 1189-1192. https://doi.org/10.1126/science.aav3384 PMid:31123105
Cancino C., Farías K., Lampas S., et al. 2010. Descripción de los complejos estructurales óseos en Helcogrammoides chilensis (Blennioidei: Tripterygiidae) de la zona central de Chile. Rev. Biol. Mar. Oceanogr. 45: 671-682. https://doi.org/10.4067/S0718-19572010000400011
Caie P., Shima J.S. 2019. Patterns of selective predation change with ontogeny but not density in a marine fish. Oecologia 189: 123-132. https://doi.org/10.1007/s00442-018-4303-3 PMid:30421006
Díaz-Astudillo M., Castillo M.I., Cáceres M.A., et al. 2017. Oceanographic and lunar forcing affects nearshore larval fish assemblages from temperate rocky reefs. Mar. Biol. Res. 13: 1015-1026. https://doi.org/10.1080/17451000.2017.1335872
Díaz-Astudillo M., Landaeta M.F., Bernal-Durán V., et al. 2019. The influence of regional and local oceanography in early stages of marine fishes from temperate rocky reefs. Mar. Biol. 166: 42. https://doi.org/10.1007/s00227-019-3489-1
Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 4.
Hasler C.T., Suski C.D., Hanson K.C., et al. 2009. Effects of water temperature on laboratory swimming performance and natural activity levels of adult largemouth bass. Can. J. Zool. 87: 589-596. https://doi.org/10.1139/Z09-044
Hernández-Miranda E., Palma A.T., Ojeda F.P. 2003. Larval fish assemblages in nearshore coastal waters off central Chile: Temporal and spatial patterns. Estuar. Coast. Shelf. Sci. 56: 1075-1092. https://doi.org/10.1016/S0272-7714(02)00308-6
Hindell J.S., Jenkins G.P., Moran S.M., et al. 2003. Swimming ability and behaviour of post-larvae of a temperate marine fish re-entrained in the pelagic environment. Oecologia 135: 158-166. https://doi.org/10.1007/s00442-003-1180-0 PMid:12647115
Hoare D.J., Krause J., Peuhkuri N., et al. 2000. Body size and shoaling in fish. J. Fish Biol. 57: 1351-1366. https://doi.org/10.1111/j.1095-8649.2000.tb02217.x
Hoare D.J., Couzin I.D., Godin J.G.J., et al. 2004. Context-dependent group size choice in fish. Anim. Behav. 67: 155-164. https://doi.org/10.1016/j.anbehav.2003.04.004
Landaeta M.F., Schrebler K., Bustos C.A., et al. 2009. Temporal fluctuations of nearshore icthyoplankton off Valparaíso, central Chile, during the ENSO cycle 1997-2000. Rev. Biol. Mar. Oceanogr. 44: 571-582. https://doi.org/10.4067/S0718-19572009000300005
Landaeta M.F., Zavala-Muñoz F., Palacios-Fuentes P., et al. 2015. Spatial and temporal variations of coastal fish larvae, ectoparasites and oceanographic conditions off central Chile. Rev. Biol. Mar. Oceanogr. 50: 563-574. https://doi.org/10.4067/S0718-19572015000400013
Leis J.M. 2006. Are Larvae of Demersal Fishes Plankton or Nekton? Adv. Mar. Biol. 51: 57-141. https://doi.org/10.1016/S0065-2881(06)51002-8
Leis J.M. 2010. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res. 57: 325-342. https://doi.org/10.1007/s10228-010-0177-z
Leis J.M., Paris C.B., Irisson J-O., et al. 2014. Orientation of fish larva in situ is consistent among locations, years and methods, but varies with time of day. Mar. Ecol. Prog. Ser. 505: 193-208. https://doi.org/10.3354/meps10792
López U., Gautrais J., Couzin I.D., et al. 2012. From behavioural analyses to models of collective motion in fish schools. Interface Focus 2: 693-707. https://doi.org/10.1098/rsfs.2012.0033 PMid:24312723 PMCid:PMC3499128
MacKenzie B.R., Leggett W.C. 1993. Wind-based models for estimating the dissipation rates of turbulent energy in aquatics environments: empirical comparisons. Mar. Ecol. Progr. Ser. 94: 207-216. https://doi.org/10.3354/meps094207
Magurran A.E. 1990. The adaptive significance of schooling as an anti-predator defence in fish. Ann. Zool. Fenn. 27: 51-66.
Mansur L., Plaza G., Landaeta M.F., et al. 2014. Planktonic duration in fourteen species of intertidal rocky fishes from the south-eastern Pacific Ocean. Mar. Freshw. Res. 65: 901-909. https://doi.org/10.1071/MF13064
Martínez C., Contreras-López M., Winckler P., et al. 2018. Coastal erosion in central Chile: A new hazard? Ocean Coast. Man. 156: 141-155. https://doi.org/10.1016/j.ocecoaman.2017.07.011
Maury O. 2017. Can schooling regulate marine populations and ecosystems? Prog. Oceanogr. 156: 91-103. https://doi.org/10.1016/j.pocean.2017.06.003
McDermontt C.J., Shima J.S. 2006. Ontogenetic shift in microhabitat preference of a temperate reef fish Forsterygion lapillum: implications for population limitation. Mar. Ecol. Prog. Ser. 320: 259-266. https://doi.org/10.3354/meps320259
Miller N., Gerlai R. 2012. From Schooling to Shoaling: Patterns of collective motion in zebrafish (Danio rerio). PLoS ONE 7: e48865. https://doi.org/10.1371/journal.pone.0048865 PMid:23166599 PMCid:PMC3498229
Muñoz A.A., Ojeda F.P. 1998. Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114: 563-573. https://doi.org/10.1007/s004420050481 PMid:28307906
Narváez D.A., Poulin E., Leiva G., et al. 2004. Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Cont. Shelf Res. 24: 279-292. https://doi.org/10.1016/j.csr.2003.09.008
Palacios-Fuentes P., Landaeta M.F., Jahnsen-Guzmán N., et al. 2014. Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis. Aquat. Ecol. 48: 259-266. https://doi.org/10.1007/s10452-014-9481-4
Parrish J.K., Edelstein-Keshet L. 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284: 99-101. https://doi.org/10.1126/science.284.5411.99 PMid:10102827
Parrish J.K., Hamner W.M., Prewitt C.T. 1997. Introduction-from individuals to aggregations: unifying properties, global framework, and the holy grails of congregation. In: Parrish J.K., Hamner W.M. (eds), Animal groups in three dimensions. Cambridge Univ. Press, Cambridge, pp. 1-14. https://doi.org/10.1017/CBO9780511601156.001
Pechenik J.A. 2006. Larval experience and latent effects - metamorphosis is not a new beginning. Integr. Comp. Biol. 46: 323-333. https://doi.org/10.1093/icb/icj028 PMid:21672745
Pérez R. 1979. Postembryonic development of Tripterygion chilensis Cancino, 1955, in Valparaíso bay (Tripterygiidae: Perciformes). Rev. Biol. Mar. 16: 19-329.
Pérez-Matus A., Sánchez F., González-But J.C., et al. 2016. Understory algae associations and predation risk influence broad-scale kelp habitat use in a temperate reef fish. Mar. Ecol. Prog. Ser. 559: 147-158. https://doi.org/10.3354/meps11892
Ruck J.G. 1973. Development of Tripterygion capito and F. robustum (Pisces: Tripterygiidae). Zool. Publ. Vic. Univ. Wellingt. 63: 1-10
Ruck J.G. 1980. Early development of Forsterygion varium, Gilloblennius decemdigitatus, and G. tripennis (Pisces: Tripterygiidae). N. Z. J. Mar. Freshw. Res. 14: 313-326. https://doi.org/10.1080/00288330.1980.9515874
Sadoul B., Mengues P.E., Friggens N.C., et al. 2014. A new method for measuring group behaviours of fish shoals from recorded videos taken in near aquaculture conditions. Aquaculture 430: 179-187. https://doi.org/10.1016/j.aquaculture.2014.04.008
Santana-Garcon J., Leis J.M., Newman S.J., et al. 2014. Presettlement schooling behaviour of a priacanthid, the Purplespotted Bigeye Priacanthus tayenus (Priacanthidae: Teleostei). Environ. Biol. Fish. 97: 277-283. https://doi.org/10.1007/s10641-013-0150-6
Shaffer G., Pizarro O., Djurfeldt L., et al. 1997. Circulation and low-frequency variability near the Chilean coast: remotely forced fluctuations during the 1991-92 El Niño. J. Phys. Oceanogr. 27: 217-235. https://doi.org/10.1175/1520-0485(1997)027<0217:CALFVN>2.0.CO;2
Shaffer G., Hormazabal S., Pizarro O., et al. 1999. Seasonal and interannual variability of currents and temperature off central Chile. J. Geophys. Res. 104: 29951-29961. https://doi.org/10.1029/1999JC900253
Shima J.S., Findlay A.M. 2002. Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish. Mar. Ecol. Prog. Ser. 235: 303-309. https://doi.org/10.3354/meps235303
Shima J.S, Swearer S.E. 2009. Larval quality is shaped by matrix effects: Implications for connectivity in a marine metapopulation. Ecology 90: 1255-1267. https://doi.org/10.1890/08-0029.1 PMid:19537546
Stepien C.A. 1990. Population structure, diets and biogeographic relationships of a rocky intertidal fish assemblage in central Chile: high levels of herbivory in a temperate system. Bull. Mar. Sci. 47: 598-612.
Wellenreuther M., Clements K.D. 2008. Determinants of habitat association in a sympatric clade of marine fishes. Mar. Biol. 154: 393-402. https://doi.org/10.1007/s00227-008-0940-0
Williams J.T., Springer V.G. 2001. Review of the South American Antartic triplefin fish genus Helcogrammoides (Perciformes: Tripterygiidae). Rev. Biol. Trop. 49: 117-123.
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.