Isotopic ratios and elemental contents as indicators of seagrass C processing and sewage influence in a tropical macrotidal ecosystem (Madagascar, Mozambique Channel)


  • Gilles Lepoint MARE centre, Laboratoire d’Océanologie, Institut de Chimie, Bât B6c, Université de Liège
  • Bruno Frédérich MARE centre, Laboratoire de Morphologie Fonctionnelle et Evolutive
  • Sylvie Gobert MARE centre, Laboratoire d’Océanologie, Institut de Chimie, Bât B6c, Université de Liège
  • Eric Parmentier MARE centre, Laboratoire de Morphologie Fonctionnelle et Evolutive



sewage impact, coastal ecosystem, seagrass, stable isotopes, tidal habitat, SW Indian Ocean


Isotopic ratios and elemental concentrations of carbon and nitrogen were measured in seven seagrass species colonising different tidal flats near Toliara (SW Madagascar) in order to determine the potential use of these parameters for assessing C processing and sewage use by tropical seagrasses. Nitrogen concentrations measured in upper intertidal seagrasses near Toliara were almost twice those measured on the tidal flat near a healthy mangrove situated 20 km away from Toliara town. At Toliara Beach, δ15N values were correlated with the N concentrations of Halodule sp., one of the dominant species on the tidal flat. This correlation did not exist for Halophila ovalis, the other dominant species. An increase in N concentrations and δ15N values demonstrates the influence of sewage coming directly onto Toliara Beach on the N cycles of intertidal seagrasses. Nevertheless, this influence seems restricted to the upper littoral zone and was not the main cause of seagrass die-off. On the other hand, at the mangrove site, δ15N values were not correlated with the N concentrations of Halodule sp. or Thalassia hemprichii, showing that natural δ15N variability is driven by other factors than the δ15N of N sources. Moreover, inter-individual variability of δ15N values was greater than inter-specific or inter-site variability, making the δ15N difficult to interpret in the context of human-disturbance influence on the N cycle of tropical seagrasses. δ13C values were close to -9‰, indicating the use of HCO3- inorganic carbon source by the seven investigated species. Contrary to our hypothesis, variation between sites and location on the tidal flat was limited, suggesting limited impact on δ13C values of sewage, emersion duration and mechanisms for HCO3- incorporation.


Download data is not yet available.


Aleem, A.A. – 1984. Distribution and ecology of seagrass communities in the Western Indian Ocean. Deep-Sea Res. Part I, 31: 919-933. doi:10.1016/0198-0149(84)90048-7

Bandeira, S.O. and F. Gell. – 2003. The seagrasses of Mozambique and Southeastern Africa. In: E.P. Green and F.T. Short (eds.), World Atlas of Seagrasses, pp. 93-100. UNEP World monitoring conservation centre, University of California Press, Berkeley.

Beer, S., M. Björk, F. Hellblom and L. Axelsson. – 2002. Inorganic carbon utilization in marine angiosperms (seagrasses). Funct. Plant Ecol., 29: 349-354. doi:10.1071/PP01185

Beer, S., M. Mtolera, T. Lyimo and M. Björk. – 2006. The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquat. Bot., 84: 367-371. doi:10.1016/j.aquabot.2005.11.007

Billé, R. and L. Mermet. – 2002. Integrated coastal management at the regional level: lessons from Toliara, Madagascar. Ocean Coast. Manage., 45: 41-58. doi:10.1016/S0964-5691(02)00048-0

Björk, M., J. Uku, A. Weil and S. Beer. – 1999. Photosynthetic tolerances to dessication of tropical intertidal seagrasses. Mar. Ecol. Prog. Ser., 191: 121-126. doi:10.3354/meps191121

Bouillon, S., N. Koedam, W. Baeyens, B. Satyanarayana and F. Dehairs. – 2004. Selectivity of subtidal benthic invertebrate communities for local microalgal production in an estuarine mangrove ecosystem during the post-monsoon period. J. Sea Res., 51: 133-144. doi:10.1016/j.seares.2003.05.003

Brouns, J.J. and F.M. Heijs. – 1991. Seagrass ecosystems in the tropical west pacific. In: A.C. Mathieson and P.H. Nienhuis (eds.), Intertidal and littoral ecosystems (Ecosystems of the World 24), pp. 371-390. Elsevier, Amsterdam

Carruthers, T.J.B., B.I. van Tussenbroek and W.C. Dennison. – 2005. Influence of submarine springs and wastewater on nutrient dynamics of Caribbean seagrass meadows. Estuar. Coast. Shelf Sci., 64: 191-199. doi:10.1016/j.ecss.2005.01.015

Coppejans, E., H. Beekman and M. De Wit. – 1992. The seagrass and associated macroalgal vegetation of Gazi Bay (Kenya). Hydrobiologia, 247: 59-75. doi:10.1007/BF00008205

Costanzo, S.D., M. J. O’Donohue, W.C. Dennison, N.R. Loneragan and M. Thomas. – 2001. A new approach for detecting and mapping sewage impacts. Mar. Pollut. Bull., 42: 149-156. doi:10.1016/S0025-326X(00)00125-9

De la Torre Castro, M. and P. Rönnbäck. – 2004. Links between humans and seagrasses - an example from tropical East Africa. Ocean Coast. Manage., 47: 361-387. doi:10.1016/j.ocecoaman.2004.07.005

Fourqurean, J.W, S.P. Escorcia, W.T. Anderson and J.C. Zieman. – 2005. Spatial and seasonal variability in elemental content, 13C, and 15N of Thalassia testudinum from South Florida and its implication for ecosystem studies. Estuaries, 28: 447-461.

Gullström, M., M. de la Torre Castro, S.O. Bandeira, M. Björk, M. Dahlberg, N. Kautsky, P. Rönnbäk and M.C. Öhman. – 2002. Seagrass ecosystems in the western Indian Ocean. Ambio, 31: 588-596. doi:10.1639/0044-7447(2002)031[0588:SEITWI]2.0.CO;2

Hemminga, M.A. and M.A. Mateo. – 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Mar. Ecol. Prog. Ser., 140: 285-298. doi:10.3354/meps140285

Kamermans, P., M.A. Hemminga, J.F. Tack, M.A. Mateo, N. Marbà, M. Mtolera, J. Stapel, A. Verheyden and T. Van Daele. – 2002. Groundwater effects on diversity and abundance of lagoonal seagrasses in Kenya and on Zanzibar Island (East Africa). Mar. Ecol. Prog. Ser., 231: 75-83. doi:10.3354/meps231075

MacClelland, J.W., I. Valiela and R.H. Michener. – 1997. Nitrogen- table isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnol. Oceanogr., 42: 930-937.

Mook, W.G. and F.C. Tan. – 1991. Stable carbon isotopes in rivers and estuaries. In: E. T. Degens, S. Kempe and J. E. Richey (eds.). Biochemistry of major world rivers, pp. 245-264. John Wiley and sons, Chichester.

Raven, J.A., A.M. Johnston, J.E. Kübler, R. Korb, S.G. McInroy, L.L. Handley, C.M. Scrimgeour, D.I. Walker, J. Beardall, M. Vanderklift, S. Fredriksen and K.H. Dunton. – 2002. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol., 29: 355-378. doi:10.1071/PP01201

Rogers, K.M. – 2003. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar. Pollut. Bull., 46: 821-827. doi:10.1016/S0025-326X(03)00097-3

Silva, J., R. Santos, M.L. Calleja and C. Duarte. – 2005. Submerged versus air-exposed intertidal macrophyte productivity: from physiological to community-level assessments. J. Exp. Mar. Biol. Ecol., 317: 87-95. doi:10.1016/j.jembe.2004.11.010

Touchette, B.W. and J.A.M. Burkholder. – 2000. Review of nitrogen and phosphorus metabolism in seagrass. J. Exp. Mar. Biol. Ecol., 250: 133-167. doi:10.1016/S0022-0981(00)00195-7

Uku, J., S. Beer and M. Björk. – 2005. Buffer sensitivity of photosynthetic carbon utilization in eight tropical seagrasses. Mar. Biol., 147: 1085-1090. doi:10.1007/s00227-005-0019-0

Yamamuro, M., H. Kayanne and H. Yamano. – 2003. 15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems. Mar. Pollut. Bull., 46: 452-458. doi:10.1016/S0025-326X(02)00463-0




How to Cite

Lepoint G, Frédérich B, Gobert S, Parmentier E. Isotopic ratios and elemental contents as indicators of seagrass C processing and sewage influence in a tropical macrotidal ecosystem (Madagascar, Mozambique Channel). Sci. mar. [Internet]. 2008Mar.30 [cited 2024Feb.22];72(1):109-17. Available from: