Comparación de la dinámica de variación isotópica en dos músculos de un pez de arrecife de coral durante la fase de asentamiento
DOI:
https://doi.org/10.3989/scimar.04225.31APalabras clave:
Acanthuridae, isótopos estables, desarrollo, ontogenia, metamorfosis, inanición, surgeonfishResumen
La variación temporal en la composiciones isotópicas del carbono y nitrógeno (δ13C y δ15N) fue investigada en el pez cirujano Acanthurus triostegus en Moorea (Polinesia Francesa). Durante un período de 24 días, peces juveniles se mantuvieron en acuarios y se sometieron a dos tratamientos de alimentación: gránulos o algas. Se compararon las dinámicas de cambio δ13C y δ15N en dos músculos con diferentes funciones (complejo aductor mandibular y musculatura epiaxial). Al final de los experimentos, no se alcanzó un sistema isotópico de estado estacionario en ningún tejido. Especialmente para el tratamiento de algas, encontramos distintos patrones de variación en composiciones isotópicas en el tiempo entre los dos músculos. Las variaciones en δ13C mostraron tendencias opuestas para cada músculo, pero las diferencias fueron mitigadas por la inanición y la metamorfosis. Nuestro estudio destaca que el metabolismo de los peces de arrecife puede ser sometido a catabolismo o anabolismo por los precursores no proteicos durante el asentamiento, induciendo variación en las composiciones isotópicas que no están vinculados al cambio de dieta.
Descargas
Citas
Ankjærø T., Christensen J.T., Grønkjær P. 2012. Tissue-specific turnover rates and trophic enrichment of stable N and C isotopes in juvenile Atlantic cod Gadus morhua fed three different diets. Mar. Ecol. Prog. Ser. 461: 197-209. http://dx.doi.org/10.3354/meps09871
Bosley K.L., Witting D.A., Chambers R.C., et al. 2002. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Mar. Ecol. Prog. Ser. 236: 233-240. http://dx.doi.org/10.3354/meps236233
Carassou L., Kulbicki M., Nicola T.J.R., et al. 2008. Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat. Living Resour. 21: 1-12. http://dx.doi.org/10.1051/alr:2008017
Caut S., Angulo E., Courchamp F. 2009. Variation in discrimination factors (δ15N and δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46: 443-453. http://dx.doi.org/10.1111/j.1365-2664.2009.01620.x
Colborne S.F., Robinson B.W. 2013. Effect of nutritional condition on variation in δ13C and δ15N stable isotope values in Pumpkinseed sunfish (Lepomis gibbosus) fed different diets. Environ. Biol. Fish. 96: 543-554. http://dx.doi.org/10.1007/s10641-012-0040-3
Doucett R.R., Booth R.K., Power G., et al. 1999. Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): Insights from stable-isotope analysis. Can. J. Fish. Aquat. Sci. 56: 2172-2180. http://dx.doi.org/10.1139/f99-147
Enyidi U., Kiljunen M., Jones R.I., et al. 2013. Nutrient assimilation by first-feeding african catfish, Clarias gariepinus, assessed using stable isotope analysis. J. World Aquacult. Soc. 44: 161-172. http://dx.doi.org/10.1111/jwas.12016
Ferron A., Leggett W.C. 1994. An appraisal of condition measures for marine fish Larvae. Adv. Mar. Biol. 30: 217-303. http://dx.doi.org/10.1016/S0065-2881(08)60064-4
Filbrun J.E., Culver D.A. 2014. Stable isotopes reveal live prey support growth of juvenile channel catfish reared under intensive feeding regimens in ponds. Aquaculture 433: 125-132. http://dx.doi.org/10.1016/j.aquaculture.2014.06.005
Frédérich B., Adriaens D., Vandewalle P. 2008. Ontogenetic shape changes in Pomacentridae (Teleostei, Perciformes) and their relationships with feeding strategies: a geometric morphometric approach. Biol. J. Linn. Soc. 95: 92-105. http://dx.doi.org/10.1111/j.1095-8312.2008.01003.x
Frédérich B., Fabri G., Lepoint G., et al. 2009. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56: 10-17. http://dx.doi.org/10.1007/s10228-008-0053-2
Frédérich B., Lehanse O., Vandewalle P., et al. 2010. Trophic Niche Width, Shift, and Specialization of Dascyllus aruanus in Toliara Lagoon, Madagascar. Copeia. 2: 218-226. http://dx.doi.org/10.1643/CE-09-031
Frédérich B., Colleye O., Lepoint G., et al. 2012. Mismatch between shape changes and ecological shifts during the post-settlement growth of the surgeonfish, Acanthurus triostegus. Front. Zool. 9: 8. http://dx.doi.org/10.1186/1742-9994-9-8 PMid:22533865 PMCid:PMC3495409
Gajdzik L., Vanreusel A., Koedam N., et al. 2014. The mangrove forests as nursery habitats for the ichthyofauna of Mida Creek (Kenya, East Africa). J. Mar. Biol. Assoc. U.K. 94: 865-877. http://dx.doi.org/10.1017/S0025315414000290
Guelinckx J., Maes J., Van Den Driessche P., et al. 2007. Changes in δ13C and δ15N in different tissues of juvenile sand goby Pomatoschistus minutus: A laboratory diet-switch experiment. Mar. Ecol. Prog. Ser. 341: 205-215. http://dx.doi.org/10.3354/meps341205
Hata H., Umezawa Y. 2011. Food habits of the farmer damselfish Stegastes nigricans inferred by stomach content, stable isotope, and fatty acid composition analyses. Ecol. Res. 26: 809-818. http://dx.doi.org/10.1007/s11284-011-0840-5
Hernandez–Lagunas L., Choi I.F., Kaji T., et al. 2005. Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev. Biol. 278: 347-357. http://dx.doi.org/10.1016/j.ydbio.2004.11.014 PMid:15680355 PMCid:PMC4028833
Herzka S.Z., Holt G.J. 2000. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: Potential applications to settlement studies. Can. J. Fish. Aquat. Sci. 57: 137-147. http://dx.doi.org/10.1139/f99-174
Hesslein R.H., Hallard K.A., Ramlal P. 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can. J. Fish. Aquat. Sci. 50: 2071-2076. http://dx.doi.org/10.1139/f93-230
Lauder G.V. 1980. Evolution of the feeding mechanism in primitive actinopterygian fishes: A functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J. Morphol. 163: 283-317. http://dx.doi.org/10.1002/jmor.1051630305
Lecchini D. 2005. Spatial and behavioural patterns of reef habitat settlement by fish larvae. Mar. Ecol. Prog. Ser. 301: 247-252. http://dx.doi.org/10.3354/meps301247
Lecchini D., Galzin R. 2003. Synthèse sur l'influence des processus pélagiques et benthiques, biotiques et abiotiques, stochastiques et déterministes, sur la dynamique de l'autorecrutement des poissons coralliens. Cybium 27: 167-184.
Lecchini D., Galzin R. 2005. Spatial repartition and ontogenetic shifts in habitat use by coral reef fishes (Moorea, French Polynesia). Mar. Biol. 147: 47-58. http://dx.doi.org/10.1007/s00227-004-1543-z
Lecchini D., Polti S., Nakamura Y., et al, 2006. New perspectives to aquarium fish trade. Fish. Sci. 72: 40-47. http://dx.doi.org/10.1111/j.1444-2906.2006.01114.x
Leis J.M. 2002. Pacific coral-reef fishes: The implications of behaviour and ecology of larvae for biodiversity and conservation, and a reassessment of the open population paradigm. Environ. Biol. Fish. 65: 199-208. http://dx.doi.org/10.1023/A:1020096720543
Lepoint G., Dauby P., Gobert S. 2004. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems. Mar. Pollut. Bull. 49: 887-891. http://dx.doi.org/10.1016/j.marpolbul.2004.07.005 PMid:15556172
Logan J.M., Jardine T.D., Miller T.J., et al. 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. J. Anim. Ecol. 77: 838-846. http://dx.doi.org/10.1111/j.1365-2656.2008.01394.x PMid:18489570
Maruyama A., Yamada Y., Rusuwa B., et al. 2001. Change in stable nitrogen isotope ratio in the muscle tissue of a migratory goby, Rhinogobius sp., in a natural setting. Can. J. Fish. Aquat. Sci. 58: 2125-2128. http://dx.doi.org/10.1139/f01-147
McCormick M.I. 1999. Delayed metamorphosis of a tropical reef fish (Acanthurus triostegus): A field experiment. Mar. Ecol. Prog. Ser. 176: 25-38. http://dx.doi.org/10.3354/meps176025
McCormick M.I., Makey L.J. 1997. Post-settlement transition in coral reef fishes: Overlooked complexity in niche shifts. Mar. Ecol. Prog. Ser. 153: 247-257. http://dx.doi.org/10.3354/meps153247
McCormick M.I., Molony B.W. 1992. Effects of feeding history on the growth characteristics of a reef fish at settlement. Mar. Biol. 114: 165-173.
Mill A.C., Pinnegar J.K., Polunin N.V.C. 2007. Explaining isotope trophic-step fractionation: why herbivorous fish are different. Funct. Ecol. 21:1137-1145. http://dx.doi.org/10.1111/j.1365-2435.2007.01330.x
Motulsky H.J. 2007. Prism 5 Statistics Guide, GraphPad Software Inc., San Diego CA, www.graphpad.com.
Ogden J.C., Lobel P.S. 1978. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fish. 3: 49-63. http://dx.doi.org/10.1007/BF00006308
Olsen S.A., Hansen P.K., Givskud H., et al. 2015. Changes in fatty acid composition and stable isotope signature of Atlantic cod (Gadus morhua) in response to laboratory dietary shifts. Aquaculture 435: 277-285. http://dx.doi.org/10.1016/j.aquaculture.2014.09.039
Pinnegar J.K., Polunin N.V.C. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13: 225-231. http://dx.doi.org/10.1046/j.1365-2435.1999.00301.x
Randall J.E. 1961. A contribution to the biology of the convict surgeonfish of the Hawaiian Islands, Acanthurus triostegus sandoicensis. Pac. Sci. 15: 215-272.
Rowlerson A., Scapolo P.A., Mascarello F., et al. 1985. Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle. J. Muscle Res. Cell Motil. 6: 601-640. http://dx.doi.org/10.1007/BF00711917 PMid:3905858
Sampey A., McKinnon A.D., Meekan M.G., et al. 2007. Glimpse into guts: overview of the feeding of larvae of tropical shorefishes. Mar. Ecol. Prog. Ser. 339: 243-257. http://dx.doi.org/10.3354/meps339243
Schmidt K., Atkinson A., Stu.bing D., et al. 2003. Trophic relationships among Southern Ocean copepods and krill: Some uses and limitations of a stable isotope approach. Limnol. Oceanogr. 48: 277-289. http://dx.doi.org/10.4319/lo.2003.48.1.0277
Sweeting C.J., Polunin N.V.C., Jennings S. 2006. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass. Sp. 20: 595-601. http://dx.doi.org/10.1002/rcm.2347 PMid:16429479
Tanaka Y., Minami H., Ishihi Y., et al. 2014. Relationship between prey utilization and growth variation in hatchery-reared Pacific bluefin tuna, Thunnus orientalis (Temminck et Schlegel), larvae estimated using nitrogen stable isotope analysis. Aquacult. Res. 45: 537-545. http://dx.doi.org/10.1111/j.1365-2109.2012.03258.x
Tieszen L.L., Boutton T.W., Tesdahl K.G., et al. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57: 32-37. http://dx.doi.org/10.1007/BF00379558
Vanderklift M.A., Ponsard S. 2003. Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia 136: 169-182. http://dx.doi.org/10.1007/s00442-003-1270-z PMid:12802678
Vandewalle P. 1978. Analyse des mouvements potentiels de la région céphalique du goujoun, Gobio gobio (L.) (Poissons, Cyprinidae). Cybium 3: 15-33.
Wilson R.P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124: 67-80. http://dx.doi.org/10.1016/0044-8486(94)90363-8
Wyatt A.S.J., Waite A.M., Humphries S. 2010. Variability in isotope discrimination factors in coral reef fishes: Implications for diet and food web reconstruction. PLoS One 5: e13682. http://dx.doi.org/10.1371/journal.pone.0013682 PMid:21060681 PMCid:PMC2965116
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.