Influence of climate on seawater quality and green mussel production




air temperature, rainfall, seawater quality, climate change, cultivation area, Perna viridis


This study aimed to investigate the relationships between atmospheric parameters, seawater quality and green mussel production which were cultured in pond, estuary and coastal areas. Seawater and mussel samples were collected from mussel farms in the inner Gulf of Thailand from January to December 2019. Climate data were obtained from the Thai Meteorological Department. The correlations between selected atmospheric and seawater parameters were developed using linear and non-linear models. The influence of seawater quality on mussel production was evaluated using principal component analysis and stepwise multiple linear regression. The effects of atmospheric variation on green mussel productivity were simulated. The results showed that high air temperature and rainfall caused an increase in seawater temperature and a decrease in salinity, respectively. It was observed that the most influential factors affecting mussel production were nutrients and dissolved oxygen in ponds, temperature and salinity in estuaries, and nutrients and pH in coastal areas. The simulation indicated that mussel production can deteriorate when air temperature reaches 34°C and rainfall is higher than 200 mm per month. Our results suggest that under climate change events, locations with less riverine influence can provide higher mussel productivity. These results can be used as a guideline for farmers during a climate change event.


Download data is not yet available.


Al-Awadhi J.M., Al-Dousari A.M., Khalaf F.I. 2014. Influence of land degradation on the local rate of dust fallout in Kuwait. Atmos. Clim. Sci. 4: 437.

Alosairi Y., Alsulaiman N., Karam Q. 2019. Responses of salinity and chlorophyll-a to extreme rainfall events in the northwest Arabian Gulf: Emphasis on Shatt Al-Arab. Mar. Pollut. Bull. 149: 1-7. PMid:31543493

Budhavant K.B., Rao P.S.P., Safai P.D., Ali K. 2009. Chemistry of monsoon and post-monsoon rains at a high altitude location, Sinhagad, India. Aerosol Air Qual. Res. 9: 65-79.

Coulliette A.D., Noble R.T. 2008. Impacts of rainfall on the water quality of the Newport River Estuary (Eastern North Carolina, USA). J. Water Health 06: 473-482. PMid:18401112

Department of Fisheries. 2020. Fisheries Statistics of Thailand 2018. Department of Fisheries, Ministry of Agriculture and Cooperatives, Thailand. 88 pp.

Donaghy L., Volety A.K. 2011. Functional and metabolic characterization of hemocytes of the green mussel, Perna viridis: in vitro impacts of temperature. Fish Shellfish Immunol. 31: 808-814. PMid:21787866

Duarte C., Navarro J.M., Acuña K., et al. 2014. Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. J. Sea Res. 85: 308-314.

Fang J.K.H., Wu R.S.S., Chan A.K.Y., et al. 2008. Influences of ammonia-nitrogen and dissolved oxygen on lysosomal integrity in green-lipped mussel Perna viridis: laboratory evaluation and field validation in Victoria Harbour, Hong Kong. Mar. Pollut. Bull. 56: 2052-2058. PMid:18789457

Firth L.B., Knights A.M., Bell S.S. 2011. Air temperature and winter mortality: Implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States. J. Exp. Mar. Biol. Ecol. 400: 250-256.

Fitzer S.C., Cusack M., Phoenix V.R., Kamenos N.A. 2014. Ocean acidification reduces the crystallographic control in juvenile mussel shells. J. Struct. Biol. 188: 39-45. PMid:25180664

Goh B.P.L., Lai C.H. 2014. Establishing the thermal threshold of the tropical mussel Perna viridis in the face of global warming. Mar. Pollut. Bull. 85: 325-331. PMid:24239310

Gu H., Shanga Y., Clements J., et al. 2019. Hypoxia aggravates the effects of ocean acidification on the physiological energetics of the blue mussel Mytilus edulis. Mar. Pollut. Bull. 149: 1-7. PMid:31454614

Hader D.-P., Barnes P.W. 2019. Comparing the impacts of climate change on the responses and linkages between terrestrial and aquatic ecosystems. Sci. Total Environ. 682: 239-246. PMid:31121350

Hansen J., Sato M., Ruedy R., et al. 2006. Global temperature change. Proc. Natl. Acad. Sci. U.S.A. 103: 14288-14293. PMid:17001018 PMCid:PMC1576294

Harvey R., Lye L., Khan A., Paterson R. 2013. The influence of air temperature on water temperature and the concentration of dissolved oxygen in Newfoundland rivers. Can. Water Resour. J. 36: 171-192.

Intergovernmental Panel on Climate Change (IPCC). 2013. Summary for policymakers. In: Stocker T.F., Qin D., Plattner G.-K. et al. (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA.

Irisarri J., Fernández-Reiriz M.-J., De Troch M., Labarta U. 2014. Fatty acids as tracers of trophic interactions between seston, mussels and biodeposits in a coastal embayment of mussel rafts in the proximity of fish cages. Comp. Biochem. Physiol. B 172-173: 105-115. PMid:24807617

Johnson F. 1971. Stream temperatures in an alpine area. J. Hydrol. 14: 322-336.

Khan M.F., Maulud K.N.A., Latif M.T., et al. 2018. Physicochemical factors and their potential sources inferred from long-term rainfall measurements at an urban and a remote rural site in tropical areas. Sci. Total Environ. 613-614: 1401-1416. PMid:29898507

Liss P.S. 1973. Processes of gas exchange across an air-water interface. Deep-Sea Res. Oceanogr. Abstr. 20: 221-238.

McFarland K., Donaghy L., Volety A.K. 2013. Effect of acute salinity changes on hemolymph osmolality and clearance rate of the non-native mussel, Perna viridis , and the native oyster, Crassostrea virginica, in Southwest Florida. Aquat. Invasions 8: 299-310.

Meng P.-J., Tew K.S., Hsieh H.-Y., Chen C.-C. 2017. Relationship between magnitude of phytoplankton blooms and rainfall in a hyper-eutrophic lagoon: A continuous monitoring approach. Mar. Pollut. Bull. 124: 897-902. PMid:28007389

Morrill J.C., Bales R.C., Conklin M.H. 2001. The relationship between air temperature and stream temperature. American Geophysical Union, Spring Meeting 2001, abstract id. H42A-09

Park J.-H., Inam E., Abdullah M.H., et al. 2011. Implications of rainfall variability for seasonality and climate-induced risks concerning surface water quality in East Asia. J. Hydrol. 400: 323-332.

Pilditch C.A., Widdows J., Kuhn N.J., et al. 2008. Effects of low tide rainfall on the erodibility of intertidal cohesive sediments. Cont. Shelf Res. 28: 1854-1865.

Ren J.S., Fox S.P., Howard-Williams C., et al. 2019. Effects of stock origin and environment on growth and reproduction of the green-lipped mussel Perna canaliculus. Aquaculture 505: 502-509.

Riani E., Cordova M.R., Arifin Z. 2018. Heavy metal pollution and its relation to the malformation of green mussels cultured in Muara Kamal waters, Jakarta Bay, Indonesia. Mar. Pollut. Bull. 133: 664-670. PMid:30041363

Sanjayasari D., Jeffs A. 2019. Optimising environmental conditions for nursery culture of juvenile Greenshell™ mussels (Perna canaliculus). Aquaculture 512: 1-10.

Sasikumar G., Krishnakumar P.K. 2011. Aquaculture planning for suspended bivalve farming systems: The integration of physiological response of green mussel with environmental variability in site selection. Ecol. Indic. 11: 734-740.

Sipaúba-Tavares L.H., Guariglia C.S.T., Braga F.M.S. 2007. Effects of rainfall on water quality in six sequentially disposed fishponds with continuous water flow. Braz. J. Biol. 67: 643-649. PMid:18278315

Sivalingam P.M. 1977. Aquaculture of the green mussel, Mytilus viridis Linnaeus, in Malaysia. Aquaculture 11: 297-312.

Song C., Pabst A., Bowers C. 1973. Stochastic analysis of air and water temperatures. J. Environ. Eng. 99: 785-800.

Sui Y., Kong H., Shang Y., et al. 2016. Effects of short-term hypoxia and seawater acidification on hemocyte responses of the mussel Mytilus coruscus. Mar. Pollut. Bull. 108: 46-52. PMid:27207025

Valiela I., Camilli L., Stone T., et al. 2012. Increased rainfall remarkably freshens estuarine and coastal waters on the Pacific coast of Panama: Magnitude and likely effects on upwelling and nutrient supply. Glob. Planet. Change 92-93: 130-137.

Wang Y., Menghong H., Shin P.S.K., Cheung S.G. 2011. Immune responses to combined effects of hypoxia and high temperature in the green-lipped mussel Perna viridis . Mar. Pollut. Bull. 63: 201-208. PMid:21722923

Wang Y., Hu M., Cheung S.G., et al. 2012. Immune parameter changes of hemocytes in green-lipped mussel Perna viridis exposure to hypoxia and hyposalinity. Aquaculture 356-357: 22-29.

Wendling C.C., Huhn M., Ayu N., et al. 2013. Habitat degradation correlates with tolerance to climate-change related stressors in the green mussel Perna viridis from West Java, Indonesia. Mar. Pollut. Bull. 71: 222-229. PMid:23660441

White R.H., Toumi R. 2014. River flow and ocean temperatures: The Congo River. J. Geophys. Res. Oceans 119: 2501-2517.

Wirmvem M.J., Ohba T., Fantong W.Y., et al. 2014. Origin of major ions in monthly rainfall events at the Bamenda Highlands, North West Cameroon. J. Env. Sci. 26: 801-809.

Wu F., Lu W., Shang Y., et al. 2016. Combined effects of seawater acidification and high temperature on hemocyte parameters in the thick shell mussel Mytilus coruscus. Fish Shellfish Immunol. 56: 554-562. PMid:27521590

Xu H., Zhang Y., Zhu X., Zheng M. 2019. Effects of rainfall-runoff pollution on eutrophication in coastal zone: A case study in Shenzhen Bay, southern China. Hydrol. Res. 50: 1062-1074.



How to Cite

Srisunont C, Srisunont T, Intarachart A, Babel S. Influence of climate on seawater quality and green mussel production. scimar [Internet]. 2022Apr.7 [cited 2022May22];86(1):e027. Available from:




Funding data

Thailand Research Fund
Grant numbers MRG6180223

Office of the Higher Education Commission
Grant numbers MRG6180223