Phenotypic plasticity at fine-grained spatial scales: the scorched mussel Perumytilus purpuratus growing on Patagonian rocky salt-marshes

Authors

DOI:

https://doi.org/10.3989/scimar.05040.16A

Keywords:

little mussels, ecomorph, geometric morphometrics, shape variation, rocky intertidal, Patagonia

Abstract


Understanding phenotypic plasticity of species at different spatial scales is vital in the current context of an increasing pace of environmental changes. Through this knowledge, it is possible to predict their potential to adapt and/or evolve in face of new environmental conditions such as climate change, and/or to understand their ecological range expansion. In Patagonian rocky salt-marshes, one of the most abundant invertebrate species is the scorched mussel Perumytilus purpuratus. In this system, this mussel can be found inhabiting both vegetated and non-vegetated patches, which differ in critical environmental conditions. We performed a field study evaluating whether mussels growing in vegetated patches differ in shell shape from those growing in adjacent non-vegetated patches. We sampled individuals from both patch types and assessed their shell shape and size using geometric morphometrics. The results showed that mussels from vegetated patches had shells that were more dorsoventrally expanded, anterodorsally restricted and globose in shape than those from non-vegetated patches, which showed the opposite traits resulting in a more elongated shell. The differences found could be driven by the different conditions of temperature, desiccation rate, wave action and population density to which mussels are exposed in each patch type. These results revealed the striking phenotypic plasticity of shell form of this native species at a fine-grained scale, which could be one of the explanations for its success in its ecological range expansion.

Downloads

Download data is not yet available.

References

Adami M., Pastorino G., Orensanz J.M. 2013. Phenotypic differentiation of ecologically significant Brachidontes species co-occurring in intertidal mussel beds from the southwestern Atlantic. Malacologia 56: 1-9. https://doi.org/10.4002/040.056.0204

Addison B. 2009. Shell traits of a marine mussel mediate predation selectivity by crabs and sea stars. J. Shellfish Res. 28: 299-303. https://doi.org/10.2983/035.028.0211

Alunno-Bruscia M., Bourget E., Fréchette M. 2001. Shell allometry and length-mass-density relationship for Mytilus edulis in an experimental food-regulated situation. Mar. Ecol. Prog. Ser. 219: 177-188. https://doi.org/10.3354/meps219177

Barbariol V., Razouls S. 2000. Experimental studies on the respiratory metabolism of Mytilus galloprovincialis (Mollusca Bivalvia) from the Mediterranean Sea (Gulf of Lion). Vie Milieu 50: 87-92.

Baythavong B.S. 2011. Linking the Spatial Scale of Environmental Variation and the Evolution of Phenotypic Plasticity: Selection Favors Adaptive Plasticity in Fine-Grained Environments. Amm. Nat. 178: 75-87. https://doi.org/10.1086/660281 PMid:21670579

Beadman H., Caldow R., Kaiser M., et al. 2003. How to toughen up your mussels: using mussel shell morphological plasticity to reduce predation losses. Mar. Biol. 142: 487-494. https://doi.org/10.1007/s00227-002-0977-4

Bergström P., Lindegarth M. 2016. Environmental influence on mussel (Mytilus edulis) growth - A quantile regression approach. Estuar. Coast. Shelf. Sci. 171: 123-132. https://doi.org/10.1016/j.ecss.2016.01.040

Bertness M.D., Gaines S.D., Yeh S.M. 1998. Making mountains out of barnacles: the dynamics of acorn barnacle hummocking. Ecology 79: 1382-1394. https://doi.org/10.1890/0012-9658(1998)079[1382:MMOOBT]2.0.CO;2

Bertness M.D., Mullan C., Silliman B.R., et al. 2006. The community structure of western Atlantic Patagonian rocky shores. Ecol. Mon. 76: 429-460. https://doi.org/10.1890/0012-9615(2006)076[0439:TCSOWA]2.0.CO;2

Bookstein F. 1991. Morphometric Tools for Landmark Data: Geometric and Biology. Cambridge University Press, New York, 435 pp. https://doi.org/10.1017/CBO9780511573064

Bourdeau P.E, Butlin R.K, Brönmark C, et al. 2015. What can aquatic gastropods tell us about phenotypic plasticity? A review and meta-analysis. Heredity 115: 312-321. https://doi.org/10.1038/hdy.2015.58 PMid:26219231 PMCid:PMC4815457

Bortolus A. 2010. Marismas Patagónicas: las últimas de Sudamérica. Ciencia Hoy 19: 10-15.

Briggs J.C., Bowen B.W. 2013. Marine shelf habitat: biogeography and evolution. J. Biogeogr. 40: 1023-1035. https://doi.org/10.1111/jbi.12082

Brönmark C., Lakowitz T., Hollander J. 2011. Predator-Induced Morphological Plasticity Across Local Populations of a Freshwater Snail. PLoS ONE 6: e21773. https://doi.org/10.1371/journal.pone.0021773 PMid:21818264 PMCid:PMC3139574

Brown R.A., Seed R., O'Connor J. 1976. A comparison of relative growth in Cerastoderma (=Cardium) edule, Modiolus modiolus, and Mytilus edulis (Mollusca: Bivalvia). J. Zool. (Lond). 179: 297-315. https://doi.org/10.1111/j.1469-7998.1976.tb02298.x

Chinzei K., Savazzi E., Seilacher A. 1982. Adaptional strategies of bivalves living as infaunal secondary soft bottom dwellers. Neues. Jahrb. Geol. Paleaontol. Abh. 164: 229-244. https://doi.org/10.1127/njgpa/164/1982/229

Cigarria J., Fernandez J. 1998. Manila clam (Ruditapes philippinarum) culture in oyster bag: influence of density on survival, growth and biometric relationships. J. Mar. Biol. Assoc. UK 78: 551-560. https://doi.org/10.1017/S0025315400041618

Covich A.P. 2010. Winning the biodiversity arms race among freshwater gastropods: competition and coexistence through shell variability and predator avoidance. Hydrobiologia 653: 191-215. https://doi.org/10.1007/s10750-010-0354-0

Cubillo A.M., Peteiro L.G., Fernández-Reiriz M.J., et al. 2012. Influence of stocking density on growth of mussels (Mytilus galloprovincialis) in suspended culture. Aquaculture 342: 103-111. https://doi.org/10.1016/j.aquaculture.2012.02.017

DeWitt T.J., Scheiner S.M. 2004. Phenotypic Plasticity: Functional and Conceptual Approaches, Oxford University Press, 272 pp.

Fitzer S.C., Vittert L., Bowman A., et al. 2015. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection? Ecol. Evol. 5: 4875-4884. https://doi.org/10.1002/ece3.1756 PMid:26640667 PMCid:PMC4662322

Fox R.J., Donelson J.M., Schunter C., et al. 2019. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B 374: 20180174. https://doi.org/10.1098/rstb.2018.0174 PMid:30966962 PMCid:PMC6365870

Gao S.B., Mo L.D., Zhang L.H., et al. 2018. Phenotypic plasticity vs. local adaptation in quantitative traits differences of Stipa grandis in semi-arid steppe, China. Sci. Rep. 8: 3148. https://doi.org/10.1038/s41598-018-21557-w PMid:29453378 PMCid:PMC5816645

Helmuth B.S. 1998. Intertidal mussel microclimates: predicting the body temperature of a sessile invertebrate. Ecol. Mon. 68: 51-74. https://doi.org/10.1890/0012-9615(1998)068[0051:IMMPTB]2.0.CO;2

Hidalgo F.J., Silliman B.R., Bazterrica M.C., et al. 2007. Predation on the rocky shores of Patagonia, Argentina. Estuar. Coast. 30: 886-894. https://doi.org/10.1007/BF02841342

Kirby R.R., Bayne B.L. 1994. Phenotypic variation along a cline in allozyme and karyotype frequencies, and its relationship with habitat, in the dog-whelk Nucella lapillus L. Biol J. Linn. Soc. 53: 255-275. https://doi.org/10.1111/j.1095-8312.1994.tb01012.x

Kirk M., Esler D., Boyd W.S. 2007. Morphology and density of mussels on natural and aquaculture structure habitats: implications for sea duck predators. Mar. Ecol. Prog. Ser. 346: 179-187. https://doi.org/10.3354/meps07046

Klingenberg C.P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Res. 11: 353-357. https://doi.org/10.1111/j.1755-0998.2010.02924.x PMid:21429143

Kroeker K.J., Kordas R.L., Crim R., et al. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol. 19: 1884-1896. https://doi.org/10.1111/gcb.12179 PMid:23505245 PMCid:PMC3664023

Levinton J.S. 2001. Marine Biology: Function, Biodiversity, Ecology, Oxford University Press, New York, 515 pp.

Márquez F., Frizzera A.C., Vázquez N. 2017. Environment-specific shell shape variation in the boring mytilid Leiosolenus patagonicus (d'Orbigny, 1842). Mar. Biol. Res. 13: 246-252. https://doi.org/10.1080/17451000.2016.1248848

Márquez F., Adami M., Trovant B., et al. 2018. Allometric differences on the shell shape of two scorched mussel species along the Atlantic South America coast. Evol. Ecol. 32: 43-56. https://doi.org/10.1007/s10682-018-9928-5

McDonald J.H., Seed R., Koehn R.K. 1991. Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres. Mar. Biol. 111: 323-333. https://doi.org/10.1007/BF01319403

Melatunan S., Calosi P., Rundle S.D., et al. 2013. Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod. Mar. Ecol. Prog. Ser. 472: 155-168. https://doi.org/10.3354/meps10046

Mestre N.C., Thatje S., Tyler P.A. 2009. The ocean is not deep enough: pressure tolerances during early ontogeny of the blue mussel Mytilus edulis. Proc. R. Soc. Lond. B. Biol. Sci. 276: 717-726. https://doi.org/10.1098/rspb.2008.1376 PMid:18986970 PMCid:PMC2660949

Miner B.G., Sultan S.E., Morgan S.G., et al. 2005. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20: 685-692. https://doi.org/10.1016/j.tree.2005.08.002 PMid:16701458

Mitteroecker P., Gunz P. 2009. Advances in Geometric morphometrics. Evol. Biol. 36: 235-247. https://doi.org/10.1007/s11692-009-9055-x

Monteiro L. 1999. Multivariate regression models and geometric morphometrics: The search for causal factors in the analysis of shape. Syst. Biol. 48: 192-199. https://doi.org/10.1080/106351599260526 PMid:12078640

Ohba S. 1956. Effects of population density on mortality and growth in an experimental culture of bivalve, Venerupis semidecussata. Biol. J. Okayama. Univ. 2: 169-173.

Orr J.C., Fabry V.J., Aumont O., et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681-686. https://doi.org/10.1038/nature04095 PMid:16193043

Padilla D.K., Savedo M.M. 2013. A systematic review of phenotypic plasticity in marine invertebrate and plant systems. Adv. Mar. Biol. 65: 67-94. https://doi.org/10.1016/B978-0-12-410498-3.00002-1 PMid:23763892

Paine R.T., Suchanek T.H. 1983. Convergence of ecological processes between independently evolved competitive dominants: a tunicate-mussel comparison. Evolution 37: 821-831. https://doi.org/10.1111/j.1558-5646.1983.tb05603.x PMid:28568114

Peyer S.M., Hermanson J.C., Lee C.E. 2016. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes. J. Exp. Biol. 213: 2602-2609. https://doi.org/10.1242/jeb.042549 PMid:20639421

Piersma T., Van Gils J.A. 2011. The flexible phenotype: a body-centred integration of ecology, physiology, and behaviour. Oxford University Press, New York, 222 pp.

Rohlf F.J. 2004. TPS Shareware Series. Department of Ecology and Evolution, State University of New York, Stony Brook, New York.

Rohlf F.J. 2016a. TpsUtil. version 1.70. Department of Ecology and Evolution, State University of New York Stony Brook, New York.

Rohlf F.J. 2016b. TpsRelw. version 1.64. Department of Ecology and Evolution, State University of New York Stony Brook, NY New York.

Rohlf F.J., Slice D. 1990. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst. Biol. 39: 40-59. https://doi.org/10.2307/2992207

Scheiner S.M.1993. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24: 35-68. https://doi.org/10.1146/annurev.es.24.110193.000343

Scherer A.E., Lunt J., Draper A.M., et al. 2016. Phenotypic plasticity in oysters (Crassostrea virginica) mediated by chemical signals from predators and injured prey. Invert. Biol. 135: 97-107. https://doi.org/10.1111/ivb.12120

Schwenk K., Padilla D.K., Bakken G.S., et al. 2009. Grand challenges in organismal biology. Integr. Comp. Biol. 49: 7-14. https://doi.org/10.1093/icb/icp034 PMid:21669841

Seed R. 1968. Factors influencing shell shape in Mytilus edulis. J. Mar. Biol. Assoc. UK 48: 561-584. https://doi.org/10.1017/S0025315400019159

Seed R. 1969. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. II. Growth and mortality. Oecologia 3: 317-335. https://doi.org/10.1007/BF00390381 PMid:28308906

Seed R. 1973. Absolute and allometric growth in the mussel, Mytilus edulis L. (Mollusca Bivalvia). Proc. Malacol. Soc. Lond. 40: 343-357.

Silliman B.R., Bertness M.D., Altieri A.H., et al. 2011. Whole-community facilitation regulates biodiversity on Patagonian rocky shores. PloS ONE 6: e24502. https://doi.org/10.1371/journal.pone.0024502 PMid:22022356 PMCid:PMC3192702

Soot-Ryen T. 1955. A report on the family Mytilidae (Pelecypoda). Allan Hancock Pacific Expeditions (series) 20. Univ. South California, Los Angeles. 174 pp.

Steffani C.N., Branch G.M. 2003. Growth rate, condition, and shell shape of Mytilus galloprovincialis: responses to wave exposure. Mar. Ecol. Prog. Ser. 246: 197-209. https://doi.org/10.3354/meps246197

Stoeckmann A. 2003. Physiological energetics of Lake Erie dreissenid mussels: a basis for the displacement of Dreissena polymorpha by Dreissena bugensis. Can. J.Fish. Aquat. Sci. 60: 126-134. https://doi.org/10.1139/f03-005

Sueiro M.C. 2012. Plantas vasculares como agentes modificadores de ecosistemas en la costa Patagónica. Universidad de Buenos Aires, PhD thesis 131 pp.

Sueiro M.C., Bortolus A., Schwindt E. 2011. Habitat complexity and community composition: relationships between different ecosystem engineers and the associated macroinvertebrate assemblages. Helgol. Mar. Res. 65: 467-477. https://doi.org/10.1007/s10152-010-0236-x

Sueiro M.C., Bortolus A., Schwindt E. 2012. The role of the physical structure of Spartina densiflora Brong. in structuring macroinvertebrate assemblages. Aquatic. Ecol. 46: 25-36. https://doi.org/10.1007/s10452-011-9379-3

Tanita S., Kikuchi S. 1957. On the density effect of the raft cultured oysters. I. The density effect within one plate. Bull. Tohoku. Reg. Fish. Lab. Res. 9: 133-142.

Telesca L., Michalek K., Sanders T., et al. 2018. Blue mussel shell shape plasticity and natural environments: a quantitative approach. Sci. Rep. 8: 2865. https://doi.org/10.1038/s41598-018-20122-9 PMid:29434221 PMCid:PMC5809382

Trivellini M.M., Van der Molen S., Márquez F. 2018. Fluctuating asymmetry in the shell shape of the Atlantic Patagonian mussel, Mytilus platensis, generated by habitat-specific constraints. Hydrobiologia 822: 189-201. https://doi.org/10.1007/s10750-018-3679-8

Trovant B., Orensanz J.M., Ruzzante D.E., et al. 2015. Scorched mussels (Bivalvia: Mytilidae: Brachidontinae) from the temperate coasts of South America: Phylogenetic relationships, trans-Pacific connections and the footprints of Quaternary glaciations. Mol. Phylogenetics. Evol. 82: 60-74. https://doi.org/10.1016/j.ympev.2014.10.002 PMid:25451805

Wilbur K.M., Saleuddin A.S.M. 1983. Shell formation. In: Wilbur K.M., Saleuddin A.S.M. (eds), The Mollusca, Academic Press, New York, pp. 235-287. https://doi.org/10.1016/B978-0-12-751404-8.50014-1

Zelditch M.L., Swiderski D.L., Sheets H.D., et al. 2004. Geometric Morphometrics for Biologists. Ed. Elsevier, London, 443 pp.

Published

2020-12-11

How to Cite

1.
Gonzalez Giorgis Y, Cruz Sueiro M, Márquez F. Phenotypic plasticity at fine-grained spatial scales: the scorched mussel Perumytilus purpuratus growing on Patagonian rocky salt-marshes. Sci. mar. [Internet]. 2020Dec.11 [cited 2024Mar.27];84(4):393-401. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1878

Issue

Section

Articles